
FedCav: Contribution-aware Model Aggregation on Distributed
Heterogeneous Data in Federated Learning

Hui Zeng

College of Computer, National

University of Defense Technology

Changsha, China

zenghui116@nudt.edu.cn

Tongqing Zhou
∗

College of Computer, National

University of Defense Technology

Changsha, China

zhoutongqing@nudt.edu.cn

Yeting Guo

College of Computer, National

University of Defense Technology

Changsha, China

guoyeting13@nudt.edu.cn

Zhiping Cai
†

College of Computer, National

University of Defense Technology

Changsha, China

zpcai@nudt.edu.cn

Fang Liu

School of Design, Hunan University

Changsha, China

fangl@hnu.edu.cn

ABSTRACT
The emerging federated learning (FL) paradigm allows multiple

distributed devices to cooperatively train models in parallel with

the raw data retained locally. The local-computed parameters will

be transferred to a centralized server for aggregation. However, the

vanilla aggregation method ignores the heterogeneity of the dis-

tributed data, which may lead to slow convergence and low training

efficiency. Yet, existing data scheduling and improved aggregation

methods either incur privacy concerns or fail to consider the fine-

grained heterogeneity. We propose FedCav, a contribution-aware

model aggregation algorithm that differentiates the merit of local

updates and explicitly favors the model-informed contributions.

The intuition is that the local data showing higher inference loss

is likely to facilitate better performance improvement. To this end,

we design a novel global loss function with explicit optimization

preference on informative local updates, theoretically prove its con-

vex property, and use it to regulate the gradient descent process

iteratively. Additionally, we propose to identify abnormal updates

with fake loss by auditing historic local training statistics. The

results of extensive experiments demonstrate that FedCav needs

fewer training rounds (~34%) for convergence and achieves bet-

ter inference accuracy (~2.4%) than the baselines (i.e., FedAvg and

FedProx). We also observe that FedCav can actively mitigate the

model replacement attacks with agile recovery capability towards

the aggregation.

CCS CONCEPTS
• Computer systems organization→ Distributed systems.

∗
Corresponding Author

†
Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00

https://doi.org/10.1145/3472456.3472504

KEYWORDS
federated learning, data heterogeneity, model replacement

ACM Reference Format:
Hui Zeng, Tongqing Zhou, Yeting Guo, Zhiping Cai, and Fang Liu. 2021.

FedCav: Contribution-aware Model Aggregation on Distributed Hetero-

geneous Data in Federated Learning. In 50th International Conference on
Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont, IL, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3472456.3472504

1 INTRODUCTION
The growing computation power and wealthy data of mobile de-

vices and AIoT have advanced the recent development of Federated

Learning (FL) [7, 13] as a typical paradigm of distributed machine

learning. FL explores paralleled local training and global aggre-

gation to cooperatively learn a model with private data retained

locally. In Fig. 1, we demonstrate a typical FL process based on the

widely adopted FedAvg for aggregation. As shown, local training is

performed using the latest global model, while a new global model

is attained by taking the average of all the locally trained models.

However, the FedAvg is criticized to have degraded performance

when given heterogeneous training data in practice [21, 23]. Gener-

ally, the data samples distributed on end devices are non-independent

or identical (i.e., non-IID) with imbalance classes, as different users

have distinct device usage habits [19]. FedAvg favors the training

results on ‘large’ clients (with more data samples), making it biased

on the distributed workers and slow to learn the knowledge on the

‘small’ clients. Taking the case in Fig. 1 as an example, the unique

samples with star label in the left client, though can yield a possibly

better performance gain, are considered less important during the

aggregation. This will accidentally increase the time for the training

to reach convergence and also reduce the performance on model

accuracy [21]. It is analyzed that the CNN model trained by FedAvg

on the non-IID CIFAR-10 dataset get a 37% accuracy decline [23].

Existing work proposes to solve the above statistical hetero-

geneity problem by either actively scheduling the data distribu-

tion [3, 5, 8, 19, 23] or optimizing the aggregation process [11, 17, 18].

On one hand, some try to sharing the local device data [23] or server-

side proxy data [8] to different end devices attain a globally more

balanced and IID dataset. However, data sharing may incur new

https://doi.org/10.1145/3472456.3472504
https://doi.org/10.1145/3472456.3472504

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zeng et al.

Σ()+()+()+…

Local training on

mobile devices

prediction

DNN model DNN model

Local training on

personal computers

Local training on

data centers

DNN modelDNN model

…… ……

Aggregation on

the FL server

Global
model

Σ()+()+()+…

Local training on

mobile devices

prediction

DNN model DNN model

Local training on

personal computers

Local training on

data centers

DNN model

…… ……

Aggregation on

the FL server

Global
model

Global
Model

Local
Update

Global
Model

Global
Model

Local
Update

Local
Update

Figure 1: Illustration of the FedAvg aggregation algorithm.
Wherein, weighted averaging on local updates are performed
with the weights determined according to the amount of
corresponding local data.

privacy concerns that go against the intention of FL. Alternatively,

much efforts have been devoted to actively select the clients for

balanced data distribution. For example, Astraea [5] introduces a

virtual mediator to reschedule the clients and rebalance the data.

Fed-Focal [17] adopts focal loss to select the best-performing clients

for global training. Reinforcement learning is introduced in the de-

sign of FAVOR [19] and FedSens [3] to help decide and select the

participants in each round of training. However, these approaches

may accidentally disclose the local data distribution and usually

introduce additional establishment latency for FL. On the other

hand, a series of optimization techniques focus on improving the

loss function. FedProx [11] adds a proximal term to the objective

that helps to improve the stability while there is a large deviation

between local updates. FedCurv [18] adds a penalty term to the

loss function and compels all local models to converge to a shared

optimum. However, these improved aggregation methods fail to

consider the imbalanced classes inside each client, as an additional

term only smooths the global heterogeneity.

In this paper, we propose a novel model aggregation method for

FL, named FedCav, to improve the training performance by endow-

ing Awareness on the Contributions (informativeness) of clients

during aVeraging on their local updates. Intuitively, the amount

of local data on a device does not reflect its merit and its potential

contribution to the global model. In other words, those minority

classes play a much more important role beyond their proportion

in data [20], e.g., it is more important for G-board to predict SOS

precisely than street names. To this end, we introduce the concept

of inference loss as the loss of making a prediction on local data

with the current global model. The inference loss is designed to

be real-time updated and reflecting the quality of the data. Then a

global loss function is designed by exponentially adding all the local

updates so the inference loss can influence the global aggregation.

A local update with larger inference loss, which is considered to be

rendered by some ‘unseen’ samples, will dominate the overall loss

value and lead the optimizing direction (i.e., gradients) for themodel

parameters. Such a contribution-aware optimization process can

help the model to agilely learn the difference and to absorb the new

knowledge faster, thereby significantly accelerating convergence.

Further, we notice that our preference on high inference loss may

be misused by adversaries to perform model replacement attacks

easier [1]. To mitigate such threats, we design a detection mecha-

nism by exploiting the differential inference loss in two neighbor

training rounds. The update that incurs significant inference per-

formance degradation on most clients is supposed to be abnormal.

The main contributions of this paper are summarized as follows:

(1) We observe that the data statistical heterogeneous will de-

grade the performance of DNN models learned through FL,

we point out that the degradation increases with the variance

of class size and give some analysis for our observation (See

§ 3)

(2) We propose FedCav for training FL, based on differentiating

and quantifying the contributions of local updates during

aggregation. A novel loss function is designed with rigorous

proof on its convex property and the dedicated aggregation

function is theoretically deduced (See § 4).

(3) We identify the possible aggravation of model replacement

threats when implementing our aggregation algorithm, and

bring forth an online anomaly detectionmechanism by jointly

considering the performance statistics (See § 4.4).

(4) We implement and measure the proposed FedCav on three

datasets. Experimental results show that FedCav can con-

verge faster and achieve better performance than the base-

lines (i.e., FedAvg, FedProx). Meanwhile, it can recover from

abnormal updates or attacks agilely (See § 5).

2 RELATEDWORK
Data heterogeneity in FL. Federated Learning (FL) allows edge

devices to collaboratively learn a shared global machine learning

model while keeping all the private training data on the devices [12].

Data heterogeneity is one of the most important problems in FL.

Although some recent works have explored some approaches that

aim to tackle this problem. We conclude these methods in two parts.

One is reducing the difference between clients’ local gradients due

to the heterogeneity of data. Another is focused on selecting par-

ticipants. Reducing the difference of local gradients. Based on

FedAvg, a small subset of training data [23] or server-side proxy

data [8] was shared between the clients. However, these methods

may be unrealistic: in addition to imposing burdens on network

bandwidth, sending local data to the server violates the key privacy

assumption of FL. Some try to add a term to make the gradients

closer. FedProx adds a proximal term to the local objective, Canh

T et al. proposed FedProxVR [4] considering the local accuracy

threshold. FedCurv [18] adds a penalty term to the loss function

and compels all local models to converge to a shared optimum.

However, the additional term increases the computation burden of

local devices, and ignore the impact of class imbalance. Selecting
participants. Some researchers try to let quality clients partici-

pate in training and improve the performance of the global model.

FAIR [22] adopts the loss reduction during the learning process to

quantify the individual learning quality, and leverage the historical

quality records to infer the current learning quality and maximize

the collective learning quality of all the participants. Reinforcement

FedCav: Contribution-aware Model Aggregation on Distributed
Heterogeneous Data in Federated Learning ICPP ’21, August 9–12, 2021, Lemont, IL, USA

learning is used to directly select the participants [19] or help the

clients make decisions whether to join a training round [3]. How-

ever, selection will make the model more biased to these clients,

quality clients are the minority and can not be online for the whole

time. And the reinforcement learning model still needs time and

resources to train.

Threats against FL.Moreover, recent research also shows the

FL vulnerability when facing malicious attacks. Adversarial attacks

the model attempt to modify the behavior of the model in some

undesirable way [9]. There are generally two levels of scope.Target
attacks, or backdoor attacks. Bagdasaryan et al. [1] first propose

this threat model, which aims to alter the model’s behavior on a

minority of examples while maintaining good accuracy on other

examples by model replacement.Untarget attacks or model down-

grade attacks, which aim to reduce the model’s accuracy, or ’fully

break’ the global model. Byzantine threat model [2] assumes an

adversary controls some clients, these clients send arbitrary but not

true local updates to the server and lead the model to divergence.

3 OBSERVATIONS AND PROBLEM
STATEMENT

In this section, we conclude and analyze data statistical hetero-

geneous and investigate the influence of data heterogeneous on

model performance in FL. We observe that with the increase of data

deviation, the performance deteriorates constantly.

3.1 Preliminaries on data heterogeneity
Some have pointed out that the impact of data heterogeneous on

FL comes from the deviation of local model [9]. Based on this,

we analyze the data statistical heterogeneous from two aspects.

From a global perspective, non-IID is the main cause of local model

deviation. On the client’s side, the class imbalance leads to a biased

local model is another important reason for the model deviation.

Global non-IID. In static view, there are native discrepancies

between each client, the discrepancies of environment and function

of client lead to the discrepancies of local data. In the dynamic

view, the data distribution changes with the clients dynamically

participating the training process at any time.

Local class imbalance. In static view, the data is a native class

imbalance, the devices of each client can only collect the class

imbalance data. In the dynamic view, the data can be generated and

collected in real-time, which leads to the class distribution changes

and make the local data class imbalance.

3.2 Observations of FL with heterogeneous data
We build multiple data heterogeneous networks and evaluate the

performance of FedAvg under these datasets. The experiment set-

tings are shown as follows in detail.

FL settings. We follow the experimental settings in existing

FL works [13]. Specifically, the total number of clients is set to be

100 with 30% clients randomly participate in each round. For local

training of each client, the size of mini-batch, training epoch is set

to be 10 and 5, respectively, and denote the learning rate as 0.001.

Model architecture. The clients collaboratively train a CNN

model. We use the model LeNet-5 [10] which is the most classic

5 10 15 20 25 30 35 40 45 50

Communication round

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

IID&balanced
non-IID&balanced
non-IID& =300
non-IID& =600
non-IID& =900

Figure 2: Classification accuracy over communication rounds
of FedAvg on 5 different distributed datasets.

DNNmodel for image classification. The model can achieve 99.683%

classification accuracy on MNIST after 20 epochs.

Data distribution. According to our analysis on data heteroge-

neous, we set three different types of data distribution. We consider

that IID is a strong constraint, and it must be locally balanced if the

global is IID. We are aware that the size of different class is usually

different in practice. Considering this fact, we set 𝜎 , the statistical

variance of different class sizes, to measure the imbalance level of

class distribution. We use the MNIST and disperse the instances to

clients according to 𝜎 . The details are shown in Table 1.

Table 1: Different types of data distribution.
Notation Description

IID&balanced

Each client is randomly assigned a

uniform distribution over all classes,

and the scalar of each class is balanced.

non-IID&balanced

Each client is randomly assigned two

partitions from two classes, and the

scalar of each class is balanced.

non-IID&imbalanced

Each client is randomly assigned two

partitions from two classes, and the

variance of each class scalar is 𝜎 .

The performance is shown in Fig. 2. We can observe that class

imbalance results in a significant accuracy decrease. Specifically,

with the balanced data, FedAvg can get convergence after 5 com-

munication rounds, while it needs approximately 20 or 35 rounds

when given imbalanced data. Moreover, the accuracy of the model

decreases and more unstable with the increase of 𝜎 .

3.3 Problem statement
In summary, the data with imbalanced class distribution will cause

an accuracy decrease and slow convergent in FedAvg. The under-

lying reason is that FedAvg weights the updates of each client

according to the data size, which is not appropriate in the real

world. In our consideration, the divergence of class distribution

renders the model unable to obtain the optimal solution through

simple averaging operations. Besides, weighting the updates by

data size causes the global model to favor the ‘large’ class, which

means that the model can fit the majority class faster and better but

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zeng et al.

the others need more iterations to get acknowledged. This would

significantly limit the practicality of FL.

4 DESIGN OF FEDCAV
As aforementioned, the main challenge of the FedAvg application

is that it implicitly treats the merit of clients as the size of data

it holds. In view of this, we design FedCav. On the basis of the

original FL mechanism, we focus on improvement on model aggre-

gation. Unlike FedAvg, our aggregation favors the model-informed

contribution rather than merely data size.

4.1 Overview of the framework
In this subsection, we first give an overview of FedCav. As shown in

Fig. 3, it mainly includes initialization and training. In initializa-
tion, the FL server first initializes the weights (model parameters)

and the optimizer of the neural network model. And it also caches

the initialized model as a backup. Then the server connects to the

network and gets ready for FL training iteration. The training part

is a multi-round interaction between clients and the server. Each

iteration of training includes three phases: compute inference
loss, local training & detection and global model update.

Compute inference loss (phase 1○). Each client downloads

the global model from the server and then compute the inference

loss. The inference loss is the value of the global model loss func-

tion(e.g., cross-entropy loss function) on the local data, more details

will be shown in § 4.2. The inference loss is transferred to the server

with the local updates. Considering the dynamic change of local

user’s data, the inference loss is updated based on the current state.

Local training (clients in phase 2○). Each client trains the down-

loaded global model with its local data and returns the updated

model to the FL server when finishing training.

Detection (server in phase 2○). The detection mechanism is

designed to prevent misusing a high inference loss for an attack.

The server compares the differential inference loss in two neighbor

training rounds to get detection results, which we will show in § 4.4.

If most clients report convergent inference loss than before, the

detection result will be set as normal, then the server caches the

inference loss for next round detection, prepares to receive the local

update; Otherwise, the server abandons this iteration and sends a

signal to all clients to reject all local updates.

Global model update (phase 3○) depends on the detection

result. If the detection result is normal, the server caches the current

global model before aggregation, then waits for the clients to report

updates. As updates are received, the server aggregates them by

processing contribution-aware model aggregation with received

inference loss. Otherwise, the server reverses the global model to

the cached model and starts a new iteration.

As shown in Fig. 3, an attacker initiates a model replacement

attack at round 𝑡 − 1, the global model was destroyed after the

aggregation in round 𝑡 − 1, at the next round 𝑡 , we detect out that
the last update is abnormal, and directly reverse the global model

to the cached one. Surely an destroyed model can gradually recover

from training, it induces much more communication overheads,

reverse to the cached model can greatly reduce these communica-

tion overheads. The method abandons the abnormal updates in the

Table 2: Definitions used in the formulation
Notations Description

𝑥𝑖, 𝑗 The 𝑗th sample in client 𝑖 .

𝑦𝑖, 𝑗 The label of 𝑥𝑖, 𝑗 .

𝑛 Total number of all clients in the network.

𝑤 Model parameters.

ℓ Loss function.

[Local learning rate.

𝑑𝑖 Local data of client 𝑖 .

𝑆𝑡 The set of participants at communication round 𝑡 .

𝐷 Total samples size of 𝑛 clients.

𝐷𝑆𝑡 The samples size of 𝑆𝑡 , 𝐷𝑆𝑡 = |𝑆𝑡 |.
𝐹 (𝑤) Global optimization problem(global loss function).

𝑓𝑖 (𝑤) Local loss function value of model𝑤 on client 𝑖 .

𝑤𝑡 Global model parameters at communication round 𝑡 .

𝑤𝑖
𝑡 Local model parameters on client 𝑖 at communication

round 𝑡 .

previous round, eliminates the long-term impact of the destroyed

model or abnormal model.

4.2 Learning problem with FedCav
In this subsection, we formulate the process of FedCav. Some nota-

tions are listed in Table 2. For convenience, we explain some basic

operations: ∥ · ∥ is 𝐿2 norm, |·| is the size of the set, ≜ is denoted

to ‘is defined to be equal to’.

Assume that a distributed network contains 𝑛 clients, each client

has its local data 𝑑𝑖 (where 𝑖 = 1, ..., 𝑛), the total samples size of the

network is 𝐷 =
∑𝑛
𝑖 |𝑑𝑖 |, the global loss function is 𝐹 (𝑤), the loss

on the collection of data samples at client 𝑖 is

𝑓𝑖 (𝑤) ≜ ℓ (𝑤,𝑑𝑖) =
|𝑑𝑖 |∑︁
𝑗

ℓ (𝑤, 𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗) (1)

For most machine learning models, the learning problem is to

minimize 𝐹 (𝑤), where the 𝐹 (𝑤) donates to the loss sum of all

clients, that is 𝐹 (𝑤) = ∑𝑛
𝑖
|𝑑𝑖 |
|𝐷 | 𝑓𝑖 (𝑤), we need to find

𝑤𝑜𝑝𝑡 = argmin 𝐹 (𝑤) (2)

Due to the complexity of training machine learning models, it’s

almost impossible to find a closed-form solution. Thus, gradient

descent is often adopted to alleviate this limitation.

4.2.1 Distributed Gradient Descent. Distributed gradient descent

is widely used in FL. In a distributed network, each client 𝑖 with

its local data 𝑑𝑖 has the capacity to compute a local model. At

communication round 𝑡 , where 𝑡 = 0, 1, 2 . . . , 𝑛, we assume the

globalmodel is𝑤𝑡 , the local model of client 𝑖 is𝑤𝑖
𝑡 , each client locally

takes one step of gradient descent on the local loss function (defined

on its local dataset), which is the local update. After one ormultiple

local updates, a global aggregation is performed in the server to

update the local parameters at each client to the weighted average

of all clients’ parameters, then the server deploys the global model

to all clients. We define that each iteration or communication
round includes a local update step and a global aggregation step.

FedCav: Contribution-aware Model Aggregation on Distributed
Heterogeneous Data in Federated Learning ICPP ’21, August 9–12, 2021, Lemont, IL, USA

ServerServer
Initialize
Weights

Initialize
Optimizer

Global

initialization

Roundt-1

Inference loss in
Roundt-1

Local Training

Local
Training

Local Training

Loss comparison
with Roundt-2

Contribution-
aware model
aggregation

Model Replacement Attack

…… ……

Reverse to the
cached model

Inference loss in
Roundt-1

Inference loss in
Roundt-1

Inference loss
in Roundt

Inference loss
in Roundt

Inference loss
in Roundt

Loss comparison
with Roundt-1Global Model

in Roundt-2

Global Model

in Roundt-1

Roundt

Phase① Phase② Phase③ Phase① Phase②
………

Client # 2Client # 2

Client # 1Client # 1

Client # NClient # N

...

AttackerAttacker

Normal update

Abnormal update

Normal update

Abnormal update

Figure 3: The workflow of FedCav. Note that clients in the two rounds are different.

The local update in each communication round is based on the

previous deployed model. For client 𝑖 , the local update is as follows:

𝑤𝑖
𝑡+1 = 𝑤𝑡 − [𝜕𝑓𝑖 (𝑤𝑡) (3)

where [is the local model learning rate. According to the global

loss function of FL, 𝐹 (𝑤) = ∑𝑛
𝑖
|𝑑𝑖 |
|𝐷 | 𝑓𝑖 (𝑤), we can easily get the

partial derivative of 𝐹 (𝑤), which is

𝜕𝐹 (𝑤) =
𝑛∑︁
𝑖

|𝑑𝑖 |
|𝐷 | 𝜕𝑓𝑖 (𝑤) (4)

for global gradient descent, we have

𝑤𝑡+1 = 𝑤𝑡 − [𝜕𝐹 (𝑤𝑡) (5)

so we can get 𝑤𝑡+1 = 𝑤𝑡 +
∑𝑛
𝑖
|𝑑𝑖 |
|𝐷 |

(
𝑤𝑡 −𝑤𝑖

𝑡+1

)
. And it is the for-

mula of FedAvg if all clients participate. Unfortunately, all clients

participation requirement is unrealistic. In real-world applications,

only partial clients outputs can be collected by the central server.

And the aggregation step performs [12]

𝑤𝑡+1 = 𝑤𝑡 +
|𝐷 |
|𝐷𝑆𝑡 |

𝑛∑︁
𝑖

|𝑑𝑖 |
|𝐷 |

(
𝑤𝑡 −𝑤𝑖

𝑡+1
)

(6)

which can be simplified as𝑤𝑡+1 = 𝑤𝑡 +
∑𝑛
𝑖
|𝑑𝑖 |
|𝐷𝑆𝑡 |

(
𝑤𝑡 −𝑤𝑖

𝑡+1

)
.

4.2.2 Global loss function of FedCav. The purpose of the training
process is to minimize 𝐹 (𝑤). Since it describes the difference of
model prediction and true label, the smaller value of 𝐹 (𝑤), the
better the model trained. Rather than use the global loss function

which averages all the client’s loss, we design a new loss function.

From the observation, the model needs more communication

rounds to get convergence while the data distribution is heteroge-

neous. The reason is the defective gradient descent step. In FedAvg,

imbalanced class distribution causes the bias of local loss, some are

extremely larger than others, some approximate to zero, decreasing

these extremely losses by using average gradient descent step needs

more iterations. To address this problem, we consider that the gra-

dient descent step should be different between different clients, a

large step is needed for a large local loss. The linear average weak-

ens the influence of each client, so we use the exponential function

to scale up, a logarithm to limit the interval of the exponential sum.

The learning formula we define as follows:

𝐹 (𝑤) = ln

(
𝑛∑︁
𝑖

𝑒 𝑓𝑖 (𝑤)
)

(7)

4.2.3 The optimization problem. For the distributed gradient-descent
based learning process, the question narrows down to determining

the optimal values of 𝑓𝑖 (𝑤). Considering that biased local losses will
be scaled up by exponential operations, the optimization process

favors a local updates with less and unbiased loss values. We give

our definition of FedCav optimization problem.

Definition 1 (Optimization problem of FedCav). For a dis-
tributed network of FL, the optimization problem of FedCav is to find
a optimal𝑤𝑜𝑝𝑡 to minimize the 𝐹 (𝑤) we define.

𝑤𝑜𝑝𝑡 = argmin 𝐹 (𝑤) = argmin ln

(
𝑛∑︁
𝑖

𝑒 𝑓𝑖 (𝑤)
)

(8)

To solve this optimization problem, We use basic gradient de-

scent. If we want to get a certain optimal solution, it requires the

𝐹 (𝑤) we define is convex and can be optimized.

Theorem 1 (Strictly convex function). For a function 𝑓 :

𝑅𝑧 → 𝑅 is a convex function, it requires 1) 𝑑𝑜𝑚(𝑓) ⊂ 𝑅𝑧 is a convex
set. 2) ∀𝑡 ∈ (0, 1),∀𝑥1, 𝑥2 ∈ 𝑑𝑜𝑚(𝑓), 𝑥1 < 𝑥2, it satisfies 𝑓 (𝑡𝑥1 + (1−
𝑡)𝑥2) ≤ 𝑡 𝑓 (𝑥1) + (1 − 𝑡) 𝑓 (𝑥2), 𝑓 is strictly convex function.

Since 𝐹 (𝑤) is related to local loss function value 𝑓𝑖 (𝑤), 𝑓𝑖 (𝑤)
is also the optimization problem of local model of client 𝑖 , which

means 𝑓𝑖 (𝑤) should get the minimum value in local training, then

we can assume it is convex certainly. Theorem 2 shows relation

between 𝐹 (𝑤) and 𝑓𝑖 (𝑤).

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zeng et al.

Theorem 2. If for all client 𝑖 , 𝑓𝑖 (𝑤) ≥ 0 and 𝑓𝑖 (𝑤) is convex, 𝐹 (𝑤)
is convex.

Proof. Please refer to Appendix.
1
for the proof. □

However, the requirement for all 𝑓𝑖 (𝑤) to be convex is not always
stand. For example, when DNN is used, 𝑓𝑖 (𝑤) is not convex. We

can only get a solution that makes 𝐹 (𝑤) as minimum as possible

if we can find a𝑤 that makes each 𝑓𝑖 (𝑤) as small as possible.The

global update can be written as follows according to (3), (5) and (8)

𝑤𝑡+1 =
𝑛∑︁
𝑖

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 [𝑓𝑖 (𝑤𝑡)]𝑤𝑖
𝑡+1 (9)

The only difference of (9) from FedAvg is the weight factor.

Roughly, this shall only impact the convergence speed. The softmax

function is used to scale up the gradients from the clients whose

local data have not been fit well, and accelerate the convergence

on this part of the data.

Note that the softmax function involves the calculation of expo-

nential function, so there is an overflow problem. To solve this, we

make the local loss function subtract the maximum value to sup-

press the overflow. Besides, the softmax function scales up the differ-

ence between local loss, if the difference is extreme, the model train-

ing process will be jiggling. Inspired by [14], we control the weight

of each client, so we choose one simplest method, clipping the local

loss 𝑓𝑗 (𝑤) with its mean, that is, min(𝑓𝑗 (𝑤),𝑚𝑒𝑎𝑛(𝑓𝑗 (𝑤))).

4.3 The aggregation algorithm
In this subsection, we present the algorithm for FedCav. We use the

theoretical results above to guide the design of the algorithm.

Algorithm 1: FedCav mdoel aggregation algorithm

Input :Number of clients 𝑛, sample ratio 𝑞.

Output :The expected optimization result of global model

𝑤𝑜𝑝𝑡 .

1 initialize global model𝑤0;

2 for each communication round t = 1, 2, . . . do
3 𝑃𝑡 ← client sets with random sampling ratio 𝑞;

4 for each client 𝑖 ∈ 𝑃𝑡 in parallel do
5 𝑤𝑖

𝑡+1, 𝑓𝑖 (𝑤𝑡) ← LocalUpdate(𝑤𝑡) ;

6 Clip the 𝑓𝑖 (𝑤𝑡);
7 𝑓𝑗 (𝑤𝑡) =𝑚𝑖𝑛{𝑓𝑖 (𝑤𝑡),𝑚𝑒𝑎𝑛(𝑓 (𝑤𝑡))};
8 ;𝑤𝑡+1 ←

∑𝑚𝑡

𝑖
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 [𝑓𝑖 (𝑤𝑡)]𝑤𝑖

𝑡+1 ;

9 𝑤𝑜𝑝𝑡 = 𝑤𝑡+1;
10 return𝑤𝑜𝑝𝑡

As mentioned before, the local updates run on edge clients, and

the global aggregation is performed through the assistance of an

aggregator, where the aggregator is a logical component, usually

deployed in the cloud server. The complete procedure of FedCav is

shown in Algorithm 1 and local update in Algorithm 2.

In Algorithm 1, the global server initializes the aggregator and

global model, then distributes the global model to all clients. Limited

1
Appendix is available at https://github.com/zenghui9977/FedCav_appendix/blob/

main/appendix.pdf

Algorithm 2: Function LocalUpdate
Input :Global model parameter𝑤𝑡 , local epochs 𝐸, local

mini-batch size 𝐵.

Output :Local updated model𝑤𝑖
𝑡+1, inference loss 𝑓𝑖 (𝑤𝑡).

1 Compute the loss based on local data 𝑑𝑖 ;

2 𝑓𝑖 (𝑤𝑡 , 𝑑𝑖) ← ℓ (𝑤𝑡 , 𝑑𝑖);
3 initialize local model𝑤𝑖

𝑡 ← 𝑤𝑡 ;

4 B ← (split 𝑑𝑖 into batches of size 𝐵);

5 for each local epoch 𝑒 = 1, 2, . . . , 𝐸 do
6 for batch 𝑏 ∈ B do
7 𝑤𝑖

𝑡+1 ← 𝑤𝑖
𝑡 − [𝜕𝑓𝑖 (𝑤𝑖

𝑡 , 𝑏) ;

8 return𝑤𝑖
𝑡+1, 𝑓𝑖 (𝑤𝑡)

by resource, only part of clients participate in the training, we use 𝑞

as sample ratio(line 3). For each client, the local update steps based

on downloaded global model(line 5). When the server gets the latest

response from all clients, the aggregator on the server updates the

global model, averaging the local model parameters according to

our deduction(line 8). Meanwhile, a clip is needed to prevent an

extreme inference loss(line 7).

Algorithm 2 shows the pseudo code of local training. Before local

updates getting start, each client computes the inference loss 𝑓𝑖 (𝑤𝑡)
based on local data (line 2), the inference loss indicates the difference

between the prediction of global model and the expectation of local

data. Then assign the local model as the downloaded global model,

usually SGD or others(line 7). The parameter [is the gradient-

descent step size in each iteration.

4.4 Mitigating model replacement attack
Some clients have high inference loss on the current model, indicat-

ing that they still have some information to learn, which is believed

to improve the performance of the global model. Our approach

attempts to understand the contributions of these clients. However,

in the real-world network, there exist some distrustful clients who

lie about inference loss values and performance information to

disrupt the model. Thus it needs to distinguish trusty clients with

qualified data from these malicious clients. To solve it, we design a

framework to mitigate the effects of malicious attacks.

As a most efficient attack approach, model replacement is com-

mon in FL [1]. The main idea of this attack is to utilize the feature

when the model gets converged, scale up the attack model to replace

the global model. In this method, attackers ambitiously attempt to

substitute the new global model𝑤𝑡+1 with a malicious model𝑀 :

𝑀 = 𝑤𝑡+1 = 𝑤𝑡 −
𝑛∑︁
𝑖

𝛾𝑖 (𝑤𝑖
𝑡+1 −𝑤𝑡) (10)

𝛾𝑖 is the weight in aggregation.

Because of the non-IID training data, each local model may be

far from the current global model. while the global model get con-

vergent, these deviations start to cancel out, and the local updates

are approximate zero,

∑𝑛
𝑖 (𝑤𝑖

𝑡+1 −𝑤𝑡) ≈ 0, therefore, the attacker

https://github.com/zenghui9977/FedCav_appendix/blob/main/appendix.pdf
https://github.com/zenghui9977/FedCav_appendix/blob/main/appendix.pdf

FedCav: Contribution-aware Model Aggregation on Distributed
Heterogeneous Data in Federated Learning ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Table 3: Variables used in the experiment
Variable Definition

𝜎 The statistic variance between each class size. The

value set to 300, 600 and 900.

𝛼 Fraction of fresh class data that is recently collected by

clients and these data have not appeared in previous

training process. The value set to 0.1, 0.3 and 0.5.

𝑚 can upload as follows to substitute:

𝑤𝑚
𝑡+1 =

1

𝛾𝑚
(𝑀 −𝑤𝑡) −

1

𝛾𝑚

𝑛∑︁
𝑖

𝛾𝑖 (𝑤𝑖
𝑡+1 −𝑤𝑡)

≈ 1

𝛾𝑚
(𝑀 −𝑤𝑡)

(11)

For FedAvg,𝛾𝑖 can be
1

𝑛 ,
∥𝑑𝑖 ∥
∥𝐷 ∥ or

∥𝑑𝑖 ∥
∥𝐷𝑆𝑡 ∥

, an attacker who does not

know 𝛾𝑖 can approximate it by iteratively increasing it every round;

for FedCav, 𝛾𝑖 is 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝑖 (𝑤𝑡)), attackers just need to scale up

the local loss, make other 𝛾 as small as possible, 𝛾𝑚 approximate to

1. Even if local loss is clipped, attackers can also iteratively increase

to get an approximate value.

We design a simple-yet-effective approach to confront this attack.

The prime purpose of the model replacement attack is to substitute

the global model or just make it break down by participating in

distributed training. An obvious feature is that the performance of

the model decreases greatly after the model replacement attack, but

FedCav is designed to improve the model performance by adding

contributions in aggregation. We utilize this feature to detect.

Concretely, the detection design is based on historic statistic

comparison and majority voting. For historic statistic comparison,

each client compares the inference loss with the maximum of infer-

ence loss in the last round, if it decreases greatly, the client should

note that there might exist an abnormality. For majority voting, the

final detection result consists of the decisions made by more than

half of the clients.

In this approach, the server caches the training result of the last

communication round, including global model parameter𝑤𝑡−1 and
local loss 𝑓 (𝑤𝑡−1). At communication round 𝑡 , 𝑛 clients upload the

results, the server collect𝑤𝑖
𝑡+1 and 𝑓𝑖 (𝑤), 𝑖 = 1, 2 . . . , 𝑛, we define

𝐼 (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) =
{
1 if condition is true

0 otherwise

(12)

We can detect whether there exists attacks in last round by

𝐷𝑟 = 𝐼

{
𝑛∑︁
𝑖

𝐼 [𝑓𝑖 (𝑤𝑡) > 𝑚𝑎𝑥 (𝑓 (𝑤𝑡−1))] ≥
𝑛

2

}
(13)

if𝐷𝑟 = 1, we conclude that most clients vote there is an abnormality

in the latest model. When an abnormality was detected at𝑤𝑡 , we

cancel the aggregation and set the global model as 𝑤𝑡−1, we call
this process as reverse.

5 EXPERIMENTS
5.1 Setup
We implement the FedCav algorithm by Pytorch. For ease of de-

scription, the notations used in the experiments are listed in Table 3.

5.1.1 Datasets and Implementation Details. We adopt three widely

used datasets: MNIST, FMNIST and CIFAR-10. MNIST is a popular

gray-scale image dataset of handwritten digits 0-9, the size of each

image is 28 × 28. FMNIST has the same format as MNIST, but

includes images of 10 different fashion items . CIFAR-10 consists of

10 classes of 32 × 32 images with three RGB channels. There are

50,000 training images and 10,000 test images. We use LeNet-5 for

MNIST, 9-layers CNN for FMNIST and Resnet18 for CIFAR-10.

5.1.2 Baselines. We choose the following algorithms as baselines:

(1) Centralized gradient descent [16]. The entire training dataset

is stored on one client and the model is trained directly using

a standard (centralized) gradient descent procedure.

(2) FedAvg [13]. A widely used algorithm proposed by Google.

(3) FedProx [11]. A distributed optimization framework that

tackles the statistical heterogeneity inherent in FL, in our

experiment the heterogeneity is the local data.

5.1.3 Data distribution on different clients. We distribute these

training samples among 100 clients. For simulating non-IID data

distribution, we refer to the method in [6], each client only has

two different labels of samples. We omit the word non-IID as all

the experiments in this part are performed in the non-IID setting.

Also, we consider that the size of each class should be imbalanced.

Specifically, we use the factor 𝜎 introduced in § 3 to control the

size difference between two labels in a client. In this setting, the

size of each class is different and the distribution of each class over

the clients is also different.

5.1.4 Training and Control Parameters. In all our experiments, we

set the total number of clients 𝑛 = 100. The configurations of local

training are local batch size 𝐵 = 10, local epoch 𝐸 = 5, local learning

rate [= 0.01, the sample ratio 𝑞 = 0.3, following the settings in [13].

The same environment of each algorithm is required for fairness.

5.2 Evaluation Results
5.2.1 Classification accuracy with different 𝜎 . In this part, we use

the top-1 test accuracy as metrics to evaluate the FLmodel.We don’t

use recall, precision, and F1 because the test dataset is balanced

which means all class have the same cost of misclassification. We

first train for a short period, for the reason that pre-training solves

the initialization problem and facilitates a fair comparison between

multiple algorithms. FedCav achieves an average 2.4% accuracy

improvement on the three datasets, details are shown in Table 4.

We set 𝜎 to 300, 600, and 900, which represents three typical

class imbalance level for FL tasks. We conclude that FedCav can

get higher accuracy in those three datasets. With a larger 𝜎 , the

data in the environment is more imbalanced, and the accuracy

decreases obviously. As shown, FedCav can generally overcome

the influence and provide relatively better accuracy after the model

gets convergence. Especially, in case with 𝜎 = 300, the FedProx

get a slightly higher accuracy on MNIST, the reason is that the

difference of each class is small, and the performance of FedAvg

and FedProx are still compatible.

5.2.2 Classification accuracy with dynamic environment. In our

analysis, the dynamic changes of user’s data can still have some

influence over the class imbalance. We refer to the class which is

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zeng et al.

Table 4: Average classification accuracy under different levels of data heterogeneity (varying 𝜎) on three datasets. Here we list
the accuracy performance of different methods after the learning process gets convergence.

𝜎 = 300 𝜎 = 600 𝜎 = 900

FedAvg FedProx FedCav FedAvg FedProx FedCav FedAvg FedProx FedCav

MNIST 0.9333 0.9391 0.9365 0.9175 0.9200 0.9200 0.8467 0.8498 0.8623
FMNIST 0.8447 0.8459 0.8621 0.8111 0.8236 0.8349 0.7397 0.7716 0.7913
CIFAR-10 0.4612 0.4644 0.4686 0.4239 0.4254 0.4287 0.4003 0.424 0.4387

collected recently and has never appeared before as fresh class.
Since some fresh class is surely different with previously existing

classes.We set an experiment to simulate the dynamic user’s data. In

this experiment, we set 𝛼 as the proportion of fresh class in all data,

for example, 𝛼 = 0.1means 10% of class labels are collected recently

and never appear in the previous FL training process. To simulate

this, we first separate the 𝛼 × 100% labels as fresh classes, the rest

is distributed in the same way with the previous experiment. To

highlight the performance of FedCav in the dynamic environment,

we pre-train the global model in the common class, then use the

three different aggregation algorithms to fit the fresh data.

The results are shown in Fig. 4. We set 𝛼 = 0.1, 0.3 and 0.5, which

represents three different situation. 𝛼 = 0.1 denotes only a small

part of the class is fresh, and 𝛼 = 0.5 represents half of the class is

collected recently. We don’t set the 𝛼 > 0.5, since the great change

on data will cause the convergence more difficult, in order to get a

more stable global model, we set the 𝛼 < 0.5. We conclude that Fed-

Cav can get better performance when some fresh data is collected.

In those three datasets, the curve of FedCav is better than FedProx

and FedAvg in most communication rounds. Since the MNIST is

simple, the FedCav just needs few communication rounds to get

convergent. For FMNIST, the curve is more approximate to the cen-

tralized CNN. For the CIFAR-10, the images with three-channel are

more complex than MNIST and FMNIST, in the FL framework its

classification accuracy decrease obviously compared to centralized

CNN, even though our solution can get some improvements. More-

over, with the increments of𝛼 , the classific ation accuracy difference

between FedCav and other methods becomes more significant. We

analyze that FedProx was worse because the regularization added

in our data heterogeneity settings still didn’t solve the problem

of too much variation across clients and it’s not suitable to deal

with the dynamic challenge. Meanwhile, the results show that our

approach is better to fit the fresh data dynamically, and achieves

34% fewer training rounds average on the three datasets, and the

reason that the global model can get convergent quickly is making

the fresh data take more contribution for accuracy improvement.

5.2.3 The Impact of clipped local inference loss. Here we explore
the impact of clipping in local inference loss. The result is shown

in Fig. 5. We can see these curves without clip all are unstable and

great up-and-down oscillation, a great drop occurs in the 17
𝑡ℎ

round

in Fig. 6(a), 18
𝑡ℎ

and 34
𝑡ℎ

round in Fig. 6(b), more than three drops

in Fig. 6(c). It indicates that some clients with a large inference loss

make the global model overfitting and finally contribute negative

effects on the global model. That implies that it is necessary to clip

the inference loss to reduce the jiggling in training.

5.2.4 Performance on abnormal detection. Here we first get the

performance when there is a model replacement attack. We sim-

ulate an adversary participates in the global training in a fixed

round, and the adversary performs a one-time-on-one-round at-

tack, for it’s a reasonable and common choice for an adversary. As

a random attack, it’s simple and of low cost, and multiple attacks

may increase the possibility of being exposed. We assume that the

adversary trains a malicious model by using all labels flipped data,

which results in the adversary’s model prediction is totally different

from the client’s data. We compare FedCav with FedAvg, the result

is shown in Fig. 6. We can see that the attack performed at the

second round, the accuracy drops to near zero, that’s, the model is

destroyed. When facing an attack, FedCav can gradually recover

from it. However, compared with the training curves in Fig. 4, the

model recovery path is tortuous, we consider that might be the con-

frontation between the normal label and flipped label, for the model

prediction which is more similar to flipped label is not consistent

with the training data. Notably, the ability to gradually recover from

an attack depends on the extent of the attack, a strong attack can

still destroy the model trained by FedCav. The experiments only

show that FedCav slightly outperforms FedAvg in some attacks.

In our framework, we design a detection mechanism to face

this attack. We set three different attacks to measure our proposed

detection method. The first one is adversary using the 20% label

poisoned model to replace. The adversary flipped 20% labels and

train a local poisoned model, then substitute the global model using

the model replacement attack. The rest is to flip 50% and 80%. As

shown in Fig. 7, there is an attack in the 4th round, andwe can detect

it in the 5th round, and reverse the global model, which greatly

reduces the recovery time compared with Fig. 6. Meanwhile, our

detection proposal is also effective in multi-attacks on multi-rounds,

for the detection is independent in such attacks. For subsequent

attacks in two rounds, the 2
𝑛𝑑

one won’t work, because the global

model is reversed and no uploads are allowed when the 1
𝑠𝑡

attack is

detected in the later round. For intermittent multiple attacks, they

are independent for we reverse the global model to cached one, so

they can still be effectively detected.

6 DISCUSSION
Quality of client local data. The premise of our weight-based on

loss is that the loss value can reflect the lack of prediction ability of

the model on some data. If the loss value can not be well reflected,

this method may not have a good effect. If the local data is worthless

and greatly different from our expectation, this kind of client will

cause a great interference to the global model by using FedCav. If

the local data carries much valuable information, our method can

accelerate the global model training process. However, it is a big

FedCav: Contribution-aware Model Aggregation on Distributed
Heterogeneous Data in Federated Learning ICPP ’21, August 9–12, 2021, Lemont, IL, USA

5 10 15 20 25 30
Communication round

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Centralized CNN
FedCav
FedAvg
FedProx

(a) MNIST (𝛼 = 0.1)

5 10 15 20 25 30
Communication round

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Centralized CNN
FedCav
FedAvg
FedProx

(b) MNIST (𝛼 = 0.3)

5 10 15 20 25 30
Communication round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Centralized CNN
FedCav
FedAvg
FedProx

(c) MNIST (𝛼 = 0.5)

10 20 30 40 50 60 70 80 90 100
Communication round

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y

Centralized CNN
FedCav
FedAvg
FedProx

(d) FMNIST (𝛼 = 0.1)

10 20 30 40 50 60 70 80 90 100
Communication round

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y

Centralized CNN
FedCav
FedAvg
FedProx

(e) FMNIST (𝛼 = 0.3)

10 20 30 40 50 60 70 80 90 100
Communication round

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
cc

ur
ac

y

Centralized CNN
FedCav
FedAvg
FedProx

(f) FMNIST (𝛼 = 0.5)

10 20 30 40 50 60 70 80 90 100
Communication round

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
cc

ur
ac

y

Centralized CNN
FedCav
FedAvg
FedProx

(g) CIFAR-10 (𝛼 = 0.1)

10 20 30 40 50 60 70 80 90 100
Communication round

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
cc

ur
ac

y

Centralized CNN
FedCav
FedAvg
FedProx

(h) CIFAR-10 (𝛼 = 0.3)

10 20 30 40 50 60 70 80 90 100
Communication round

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
cc

ur
ac

y

Centralized CNN
FedCav
FedAvg
FedProx

(i) CIFAR-10 (𝛼 = 0.5)

Figure 4: Classification accuracy with dynamic data distribution adjustment controlled by factor 𝛼 on three dataset. Results on
different datasets are painted, wherein FedCav shows a generally stable and superior performance.

5 10 15 20 25 30 35 40 45 50
Communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

FedCav
FedCav without Clip

(a) Clip versus non-Clip on MNIST.

5 10 15 20 25 30 35 40 45 50
Communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

FedCav
FedCav without Clip

(b) Clip versus non-Clip on FMNIST.

5 10 15 20 25 30 35 40 45 50
Communication round

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
cc

ur
ac

y

FedCav
FedCav without Clip

(c) Clip versus non-Clip on CIFAR-10.

Figure 5: Training process with four different algorithms on three datasets. Comparing the difference of whether it is necessary
to use the Clip strategy. The curve shows that FedCav without Clip occurs great up-and-down oscillation.

challenge to measure the quality of local data, for that we can not

directly access to client’s local data in FL design. In our experiments,

we just assume that all data is valuable.

Authenticity of updates. In FedCav, the loss and local model

parameters are uploaded by the client, the server receives these up-

dates and aggregates. In practice, the authenticity of these updates

is important. Fabricating data and uploading false data may bring

unexpected threats to the global model. We can use TEE to solve

this problem, such as SGX and [15]. It ensures the authenticity and

integrity of local calculation results.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zeng et al.

0 5 10 15 20 25 30
Communication round

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Attack

FedAvg
FedCav without Detection

(a) Model replacement attack on MNIST.

0 5 10 15 20 25 30
Communication round

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Attack

FedAvg
FedCav without Detection

(b) Model replacement attack on FMNIST.

0 5 10 15 20 25 30
Communication round

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
cc

ur
ac

y

Attack

FedAvg
FedCav without Detection

(c) Model replacement attack on CIFAR-10.

Figure 6: Part of training process of FedCav without detection and FedAvg after the model replacement attack on three datasets.

1 2 3 4 5 6

Communication round

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Attack

Reverse

20% label poisoned
50% label poisoned
80% label poisoned

Figure 7: Performance recovery under different strengths of
attacks.

Overhead of FedCav. In our analysis, FedCav is still practical

while some extra computation and communication overhead is re-

quired. For communication overhead, FedCav only needs one extra

float (inference loss) for each client. The computation overhead

is the inference latency at the beginning of each training round.

For instance, the latency is 0.0857s in MNIST, which is acceptable

compared with the training time 0.1620 × 𝐸 s (E is the local epoch).

7 CONCLUSION
FedAvg algorithm is widely used in FL, but there are still some

problems in real-world applications. In this work, we verify the

performance of FedAvg in non-IID & class imbalanced network. We

conclude that the distribution of classes greatly influences the global

model’s performance. Based on this observation, we proposed our

method FedCav. Our method is tested on MNIST, FMNIST ,and

CIFAR-10 datasets, and the results show that our method has fewer

communication rounds and higher accuracy when fresh data come

into the distributed network. And we design a detection mechanism

for the vulnerability in FedCav, the experiment shows that it can

effectively detect attacks.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-

ment Program of China (2020YFC2003400), the National Natural

Science Foundation of China (62072465), and the NUDT Research

Grants (No. ZK19-38).

REFERENCES
[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. 2020. How To Backdoor Federated Learning. In Proc. of AISTATS

(2020), Vol. 108. 2938–2948.
[2] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. 2017.

Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. In

Proc. of NIPS (2017). 118–128.
[3] Zhang Daniel (Yue), Kou Ziyi, and Wang Dong. 2021. FedSens: A Federated

Learning Approach for Smart Health Sensing with Class Imbalance in Resource

Constrained Edge Computing. In Proc. of INFOCOM (2021).
[4] Canh T Dinh, Nguyen H Tran, et al. 2020. Federated learning with proximal

stochastic variance reduced gradient algorithms. In Proc. of ICPP(2020). 1–11.
[5] M. Duan, D. Liu, X. Chen, Y. Tan, J. Ren, L. Qiao, and L. Liang. 2019. Astraea: Self-

Balancing Federated Learning for Improving Classification Accuracy of Mobile

Deep Learning Applications. In In Proc. of ICCD (2019). 246–254.
[6] Robin CGeyer, Tassilo Klein, andMoin Nabi. 2017. Differentially private federated

learning: A client level perspective. arXiv preprint arXiv:1712.07557 (2017).

[7] Yeting Guo, Fang Liu, Zhiping Cai, Li Chen, and Nong Xiao. 2020. FEEL: A

Federated Edge Learning System for Efficient and Privacy-Preserving Mobile

Healthcare. In Proc. of ICPP (2020). Article 9, 11 pages.
[8] Li Huang, Yifeng Yin, Zeng Fu, Shifa Zhang, Hao Deng, and Dianbo Liu. 2018.

LoAdaBoost: Loss-Based AdaBoost Federated Machine Learning on medical Data.

CoRR abs/1811.12629 (2018). arXiv:1811.12629

[9] Edited Kairouz andH.McMahan. 2021. Advances andOpen Problems in Federated

Learning. Foundations and Trends® in Machine Learning 14 (01 2021).

[10] Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. 1998. Gradient-Based

Learning Applied to Document Recognition. Proc. IEEE (1998), 2278 – 2324.

[11] Tian Li, Anit Kumar Sahu, Manzil Zaheer, et al. 2018. Federated optimization in

heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018).

[12] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019.

On the convergence of fedavg on non-iid data. (2019). arXiv:1907.02189

[13] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In Proc. of AISTATS (2017), Vol. 54. 1273–1282.
[14] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learn-

ing Differentially Private Recurrent Language Models. In Proc. of ICLR (2018).
[15] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, et al. 2016. Obliv-

ious multi-party machine learning on trusted processors. In 25th USENIX Security
Symposium. 619–636.

[16] S. A. Rahman, H. Tout, H. Ould-Slimane, A.Mourad, C. Talhi, andM. Guizani. 2020.

A Survey on Federated Learning: The Journey from Centralized to Distributed

On-Site Learning and Beyond. IEEE IoTJ (2020), 1–1.
[17] Dipankar Sarkar, Ankur Narang, and Sumit Rai. 2020. Fed-Focal Loss for imbal-

anced data classification in Federated Learning. (2020). arXiv:2011.06283

[18] Neta Shoham, Tomer Avidor, Aviv Keren, et al. 2019. Overcoming forgetting in

federated learning on non-iid data. arXiv preprint arXiv:1910.07796 (2019).
[19] H. Wang, Z. Kaplan, D. Niu, and B. Li. 2020. Optimizing Federated Learning on

Non-IID Data with Reinforcement Learning. In Proc. of the IEEE Conference on
Computer Communications (INFOCOM). 1698–1707.

[20] Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. 2020. Towards Class Imbalance

in Federated Learning. arXiv preprint arXiv:2008.06217 (2020).

[21] Peng Xiao, Samuel Cheng, Vladimir Stankovic, and Dejan Vukobratovic. 2020.

Averaging Is Probably Not the Optimum Way of Aggregating Parameters in

Federated Learning. Entropy 22 (2020), 314.

[22] Deng Yongheng, Lyu Feng, et al. 2021. FAIR: Quality-Aware Federated Learning

with Precise User Incentive and Model Aggregation. In Proc. of INFOCOM (2021).
[23] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, et al. 2018. Federated Learning

with Non-IID Data. arXiv e-prints (2018). arXiv:1806.00582

https://arxiv.org/abs/1811.12629
https://arxiv.org/abs/1907.02189
https://arxiv.org/abs/2011.06283
https://arxiv.org/abs/1806.00582

	Abstract
	1 Introduction
	2 Related Work
	3 Observations and Problem Statement
	3.1 Preliminaries on data heterogeneity
	3.2 Observations of FL with heterogeneous data
	3.3 Problem statement

	4 Design of FedCav
	4.1 Overview of the framework
	4.2 Learning problem with FedCav
	4.3 The aggregation algorithm
	4.4 Mitigating model replacement attack

	5 Experiments
	5.1 Setup
	5.2 Evaluation Results

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

