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Abstract—The privacy-preserving nature of Federated Learn-
ing (FL) exposes such a distributed learning paradigm to the
planting of backdoors with locally corrupted data. We discover
that FL backdoors, under a new on-off multi-shot attack form,
are essentially stealthy against existing defenses that are built
on model statistics and spectral analysis. First-hand observa-
tions of such attacks show that the backdoored models are
indistinguishable from normal ones w.r.t. both low-level and
high-level representations. We thus emphasize that a critical
redemption, if not the only, for the tricky stealthiness is reactive
tracing and posterior mitigation. A three-step remedy framework
is then proposed by exploring the temporal and inferential
correlations of models on a trapped sample from an attack. In
particular, we use shift ensemble detection and co-occurrence
analysis for adversary identification, and repair the model via
malicious ingredients removal under theoretical error guarantee.
Extensive experiments on various backdoor settings demonstrate
that our framework can achieve accuracy on attack round
identification of ∼80% and on attackers of ∼50%, which are
∼28.76% better than existing proactive defenses. Meanwhile, it
can successfully eliminate the influence of backdoors with only
a 5%∼6% performance drop.

Index Terms—Machine learning security, Federated Learning,
Backdoor attacks

I. INTRODUCTION

The growing computation power, enriched data of mobile
devices, development of artificial intelligence algorithms, and
privacy concerns [1] have brought Federated Learning (FL)
to the spotlight of distributed machine learning paradigm [2].
By accommodating massive users to cooperatively learn a
model with their data stored locally, FL has supported plenty
of real-world learning scenarios (e.g., industrial [3], [4] and
medical [5]).

Although FL is capable of fusing dispersed knowledge pro-
vided by different participants for better models, its privacy-
preserving nature for distributed participants has unfortunately
provided a venue for adversarial attacks [6]. Initiated by
the work [7], a line of recent literature presents ways to
insert backdoors in FL via corrupting local data [6], [8]–
[11]. Fig. 1 presents a general process of backdoor attacks.
Wherein participants are supposed to behave well by training
local models and uploading them for global aggregation, while
attackers poison their local data by injecting dedicated triggers
(e.g., visible mark, invisible style) on normal samples and plant
the backdoor by training on such samples. In the example case,
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Fig. 1. Overview of attackers inserting backdoor triggers into the global
model in FL during the training process.

the target classification on the stop sign is redirected to the
pass interpretation with a black mark on the training samples.
As a result, the aggregation in the cloud server will inherit the
backdoor from local updates and cause erroneous predictions
in the field.

Existing work proposes to mitigate backdoor attacks by ei-
ther adopting robust aggregation algorithms [12]–[14] or filter-
ing poisoned local updates based on the model deviation [15]–
[20]. On the one hand, most of these aggregation algorithms
play with a robust mean or other statistics of the local updates.
However, a recent study shows these algorithms did little to
defend against backdoor attacks, and their performance de-
grades when data is non-IID [9], [11]. As to model deviation-
based methods, BAFFLE [15] and FedCav [16] compare the
historic feedback of the local model to uncover the poisoned
local updates, while DeepSight [21] and FAA-DL [18] use
clustering or anomaly detection algorithms to analyze the
local updates. Lately, dimensional reduction techniques are
claimed to be essential for local models clustering under low-
dimensional representations [19] [20]. However, these methods
usually acquire strong assumptions that the backdoored models
and benign models can be clearly distinguished. In summary,



the prototypical idea for these defense methods is to estimate a
temporary “center” of the local updates in the training process
rather than attempting to identify the attackers.

By digging into the stealthiness of FL backdoors, this
work presents a new on-off multi-shot attack form (OMBA),
which is considered a generic strategy for smart/reasonable
adversaries. In such attacks, a small group of attackers colludes
to alternatively be normal (training with benign samples)
and malicious (training with corrupted samples) in multiple
FL rounds. Being effective in simulated attacks, OMBA is
observed to facilitate strong stealthiness in view of the savvy
audit. That is, the backdoored models of OMBA are indis-
tinguishable from those normal updates on parameters and
can successfully bypass both the statistic-based and clustering-
based defenses in the literature. We note that these experimen-
tal findings are aligned with the latest theoretical discussions
on the detectability of dedicated backdoors in FL [22].

Stealthy FL backdoor attacks render existing proactive de-
fenses ineffective. To this end, we emphasize that a proper
redemption after experiencing a backdoor model invocation
could be the last resort, that is, we need to reactively trace the
troublemakers and remedy the model in the posterior. For this,
we further propose a three-step tracing and mitigation frame-
work by exploring the temporal and inferential correlations of
models in the face of a trapped poisoned sample. Specifically,
we first use the multi-dimension (i.e., directional, numerical,
and probabilistic) similarity changes detected by ensemble
unsupervised learning to identify the attack rounds and pick
out the attackers by analyzing their co-occurrence frequency
in these rounds. To eliminate the influence of backdoor in
the released model, we further theoretically show that, by
removing the identified backdoored ingredients, a healthy
model can be re-gained.

This work has provided the following contributions:

• We design a new FL backdoor attack form based on the
on-off multi-shot strategy. First-hand observations on the
effectiveness and, more importantly, the stealthiness of
such attacks are presented.

• We propose a tracing and mitigation framework to rem-
edy FL backdoors by identifying attack round and at-
tackers with local models’ temporal and inferential cor-
relations on the poisoning sample. We provide theoretical
analysis on the bound of differences between “healthy”
model and repaired model via ingredients removal.

• We conduct extensive experiments under various FL and
attack settings (i.e., data distribution, trigger injection
strategy, and backdoor strategy) on MNIST and FMNIST.
The results demonstrate the superior performance of
our framework on attacking identification accuracy in
comparison with two SoTA defenses (28.76% better in
average). It also shows that the framework can effectively
remove the backdoor under all the attack scenarios with
a performance drop of less than 6%.

II. RELATED WORK

A. Backdoor Attacks against FL

A burning challenge in FL is that the decentralized nature
makes it vulnerable to poisoning attacks, especially backdoor
attacks. Backdoor attacks [23] aim to manipulate a subset
of training data by injecting adversarial triggers, such that
machine learning models trained on the tampered dataset will
perform well on benign samples, whereas its prediction will
be maliciously changed if the hidden backdoor is activated by
the attacker-defined trigger. The threat could easily happen in
FL since the attackers can manipulate both the training data
and the (local) training process.

Bagdasaryan et al. [7] first introduced the backdoor attack
into FL. By scaling up the attacker’s updates, the global model
can be replaced with a local backdoored one. Bhagoji et al.
[8] considered the case of one malicious attacker aiming to
achieve both global model convergence and targeted poisoning
attack by boosting the malicious updates. Sun et al. conducted
an empirical study of semantic-backdoor attacks on FL. They
find the performance of the attack largely depends on the
fraction of adversaries and the complexity of the backdoor
tasks. Xie et al. exploited the distributed nature of FL and pro-
posed an insidious backdoor attack scheme called distributed
backdoor attack (DBA) [9]. DBA leveraged multiple malicious
clients to submit poisoned updates containing a “trigger por-
tion” each so that the resulting global model is sensitive to
the combined trigger. Besides, many researchers [6] [10] [11]
[24] have shown that FL is vulnerable to backdoor attacks.

B. Defenses for FL Backdoors

To alleviate the backdoor attacks in FL, several backdoor
defenses were proposed. Existing methods can roughly be
categorized into Byzantine-resilient aggregations and model
deviation-based defense.

1) Byzantine-resilient aggregations: In traditional SGD-
based federated learning algorithms, the central server updates
the global model by averaging the local updates (gradients)
from the participants [2]. To eliminate the Byzantine threats,
robust aggregation methods proposed different aggregation
rules with a robust mean to replace the directly averaging,
such as Median [12], Trimmed-mean [12], Krum [13], and
Zeno [14]. However, these methods suffer a worse perfor-
mance on non-IID [25], and they can easily fail when en-
countering fine-crafted poisoned models, as described in [11].

2) Model deviation-based defense: In backdoor attacks,
a common observation is that the model updates from the
attackers have distinctive model deviations compared to the
ones from benign participants [26]. These methods can be
finely divided into statistical-based and clustering-based.

The statistical-based defense methods provide defensive
methods by analyzing the statistical information of the model
deviation. BAFFLE [15] and FedCav [16] use the historic
feedback changes to uncover the backdoor attacks since the
feedback changes are different between backdoored models
and benign models. However, these methods rely on the
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majority being honest, and these methods might fail when the
feedback from the participants is not the truth.

The clustering-based defense methods are based on clus-
tering techniques to distinguish the model whether it is from
the attackers. FLguard [17], DeepSight [21], and FAA-DL [18]
directly analyze the features of the local models and use cluster
algorithms or anomaly detection algorithms to separate the
local models into two groups. RFLBAT [19] and HFLens [20]
use dimensional reduction techniques such as t-SNE and PCA
that create low-dimensional representations to separate the
local updates into two groups. However, the clustering-based
defense methods can only divide the participants into two
groups with unknown labels. Furthermore, when the data is
non-IID & imbalanced, these methods cannot separate the
attackers from all the participants [25].

III. STEALTHY BACKDOOR ATTACK ON FL

We investigate the stealthiness of the backdoor attack on FL
by designing and testing a novel attack form and elaborate on
the necessity of tracing the backdoor after its invoking.

A. On-off Multi-shot Backdoor Attack (OMBA)

As described in § II-A, many works leverage deliberated
training data poisoning to plant a backdoor in FL models.
Predominately, existing backdoor attacks focus on yielding
a high attack success rate (e.g., by scaling up poisoned
parameters [7]) and reducing the impact on benign inference
accuracy (e.g., by boosting [8]). However, the adopted one-
shot1 or continuous attacking mode makes the poisoned up-
dates conspicuous and is detectable under statistic-based [16]
or clustering-based defenses [22].

In practice, the centralized server, which launches the FL
task, is usually savvy and knowledgeable on all the updates in
each round. Hence, besides effective backdoor injection during
local training, a “smart” attacker would essentially manage to
keep stealthy (i.e., not easily detected) from the savvy server
for successfully planting his/her backdoors.

As the first study on the generic form for the stealthy
backdoor attack on FL, we propose a simple-yet-effective
attack based on the combination of multi-shot and on-off
strategy. Concretely, we emphasize that smart attackers would
a) distribute poisoned knowledge injection into a bounded

1We term a round of FL with adversary injection as one shot.

number of FL rounds for noticeable update w.r.t. spectral
analysis, and b) behave normally and maliciously alternatively
to avoid being identified from statistically accumulated differ-
ences. Tunable factors for such an attack form include on-
off interval and on-off ratio, which should be jointly settled.
Generally, a longer interval means to behave well for more
rounds with their weak injection more likely to be offset by
normal aggregation [22], while a higher ratio indicates more
injected knowledge yet higher exposure possibility. We will
test their varying effects in § VI, and below, we present some
initial evaluations on attack effectiveness with default setups.

B. Attack Effectiveness Analysis

For the basic FL setup, we follow typical experimental
settings in existing work [2] and aim to obtain an image
classifier using FedAvg on MNIST. Totally 100 participants
involve in the task, and 10% of them upload their local models
in each round. To simulate OMBA, we assume there are
three attackers, which launch five shots with an off interval
of 3 during the learning. The performance curves on benign
accuracy (BA) and attack success rate (ASR) are shown in
Fig. 2. We notice that the ASR rapidly rises to 92% at the
beginning of four shots and gets convergent at around 94%,
while the BA keeps being stable. It indicates that the backdoor
is successfully injected into the global model under OMBA.

C. Attack Stealthiness Analysis

We analyze the stealthiness of OMBA w.r.t. the low-level
benign-backdoored model differences and its high-level per-
formance under SoTA defenses, with which we present the
first-hand observations.

1) Indistinguishable models: Basically, if the backdoored
model has an obvious difference from the benign model, then
they can be distinguished. Thus, model similarity can be an
indicator of stealthiness. Here, we flat the parameters of the
model of the participant k in the t-th round into a row vector
wt

k and measure its similarity with the latest global model
wt−1 using wt

k·w
t−1

∥wt
k∥·∥wt−1∥ (i.e., Cosine) and 1√∑

|w| ∥wt
k−wt−1∥2

(i.e., Euclidean). Table. I shows the similarity measurements
of the benign participants and attackers under different data
distribution settings (IID and non-IID). Here, we use the
Dirichlet distribution with α = 0.5 to simulate the non-
IID setting following [8]. Statistically, we can observe that



parameters of benign models and backdoored models under
OMBA are indistinguishable for presenting very high p-values.

TABLE I
MODEL SIMILARITY MEASUREMENTS BETWEEN BENIGN/BACKDOORED

MODELS AND THE GLOBAL MODEL.

Cosine similarity Euclidean similarity

IID non-IID IID non-IID

Benign (Avg) 0.9782 0.7462 0.1321 0.0559
Backdoored (Avg) 0.9506 0.727 0.1164 0.0533

p-value 0.9034 0.9423 0.7494 0.7801

2) Against SoTA defenses: Technically, we use the SoTA
statistic-based defense FedCav [16] and clustering-based de-
fense HFLens [20] to test the stealthiness.

Specifically, FedCav introduces a reporting phase in each
round that collects the prediction error of the latest global
model on local data, termed inference loss. With half of all
participants in one round reporting inference losses signifi-
cantly bigger than historical losses, FedCav marks the former
round of FL as abnormal. By implementing FedCav in the
above FL task under OMBA, we find that it doesn’t raise any
warnings for all five rounds of injection. Fig. 3 depicts the
changing of inference loss under OMBA, wherein the loss
values of the attack rounds (red dots) show nothing different.

Note that mapping high-dimensional model features to low-
dimension space is the basic step for detecting outliers in
clustering-based defense. We follow the input of HFLens
to embed the model accuracy, training loss, model weights,
gradients, and sample size of the global model of each round,
including both benign and backdoored ones, into model feature
vectors. Then we compute the distance matrix using Canberra
Distance [27] and perform t-SNE [28] on vectors to generate
their 2D projections, which are rendered in Fig. 4. Each point
in the 2D space represents the projection of the global model
in one round, with the linked black curve representing the
performance evolution path. We can observe that dots of the
attack rounds are mixed with those of the normal rounds
and can hardly be categorized as outliers, which demonstrates
OMBA’s stealthiness in spectral analysis.

We conclude that the proposed OMBA, as a simple-yet-
effective attacking form, is a reasonable choice of smart attack-
ers for planting backdoors and avoiding being detected. Note
that this is aligned with the latest theoretical statement in [22]
that a fine-crafted backdoor in classifiers is undetectable. These
observations motivate our design of a tracing mechanism for
accountability and remedy when the backdoor is invoked and
erroneous decisions happen.

IV. OVERVIEW ON STEALTHY BACKDOOR MITIGATION

A. System Assumptions

1) Adversary: Arbitrary FL participants conspire with each
other to corrupt their local data with a certain trigger (e.g., vis-
ible mark [23], invisible style [29]). All attackers alternatively

turn malicious by performing local training on their poisoned
data to inject a backdoor according to the OMBA settings. The
backdoored models are then intermittently aggregated into the
global model with the backdoor retained in the final release.
As both data and models are accessible, this process belongs
to the white-box attacks. Occasionally, adversaries will invoke,
or even sell [22], the trigger to induce erroneous behaviors of
the released model.

2) Defense: The central server plays the role of the de-
fender as the trained model is its property. As the FL aggre-
gator, the central server has access to all the global models
and records all the intermediate training results, including
participants St and local updates {∆wt

k}
|St|
k=1 in each round.

More importantly, the injection process is undetectable (§ III),
we assume a reactive mitigation (i.e., remedy) manner, which
starts with the trapping of a malicious sample with a trigger
(i.e., poisoned sample) during backdoor invoking in practice.
We make no assumption on the injected trigger, as it isn’t
necessarily exposed after trapping a poisoned sample.

B. Goals and Challenges

Our defensive efforts include two specific goals:
• Tracing the troublemakers (attackers) of an invoked

backdoor attack for accountability and reputation/reward
management.

• Mitigating the hidden backdoor to avoid corresponding
erroneous behaviors on poisoned samples, while main-
taining performance on benign samples.

However, the inherent characteristics of FL lead to the
following challenges in attaining the above goals:

• Backdoor inheritance. FL iteratively updates the global
model with local updates trained on the previous global
model. Once a global model is poisoned, all the subse-
quent models trained based on it are poisoned. Consider-
ing such a chained learning process and the accumulation
effects of backdoor injection, distinguishing the attack
rounds from the poisoned ones is hard.

• Stochastic attack. Whereas FL participants are usually
selected randomly in each round, attackers can also
freely choose the shot time. Such dual-stochastic property
makes the attack round non-deterministic in practice.

• Inaccessible training data. The privacy-preserving tenet
of FL deters the server from detecting backdoor based on
the trained data like existing tools do [30].

C. Strawman Solutions

There are several viable strawman solutions for the goals of
identifying attackers and remedying the backdoors.

Theoretically, existing clustering-based methods [17], [20],
[21] may be helpful in separating all the local updates into
normal and abnormal groups. However, the inheritance prop-
erty would make many benign updates falling in the abnormal
group, while the accumulative property of injection would
misclassify the initial attack into the normal group. In fact, we
can observe its ineffectiveness with visualization on all local
model projections. The results are presented in Appendix A.
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On the other hand, for mitigation, once a backdoor is de-
tected, the server could simply reject the poisoned model and
train another model. However, this strategy would introduce
high computation costs, and there is still no guarantee of
the safety of re-training regarding backdoor. Further, a savvy
server could try to amend the deviated gradients by performing
post-training [31], fine-tuning [30], or distillation [32] on the
final global model. With bare knowledge of local poisoned
data, such attempts can hardly neutralize fine-crafted back-
doors injected via unknown host samples.

D. Design Intuition and Overview

We then describe our high-level intuitions and framework
design for fulfilling the goals.

1) Key intuition: The essential difference between existing
proactive defenses and our reactive tracing&mitigation lies
in the trapping of a poisoned sample2, which is the key
for tracing. Intuitively, based on binding the same trigger
to samples of different categories, a backdoor, if invoked,
shall yield similar outputs on the tested models (w.l.o.g.,
classifiers). Once trapping a poisoned sample, we can compare
its inference output on the released model (backdoored as
having been invoked) and the intermediate local models to find
similarity clues on making erroneous predictions. An effective
attack round would strengthen the backdoor performance, thus
inherently reducing the prediction gap between the corre-
sponding model and the released model. As a result, by finding
change points of the poisoned sample’s predication similarity,
we may localize the rounds with malicious participants.

Further, considering the alternative benign and malicious
mode of attackers in OMBA, one’s occurrence frequency in

2Note that the design only requires one trapped sample to take effect.
We empirically observe that more trapped samples couldn’t improve the
performance significantly.

all identified attack rounds could be taken as evidence of being
a suspect. Ideally, with accurately identified attack rounds and
attackers, the server can subtract the malicious updates to get
rid of the backdoor and obtain a clean model.

2) Framework: Based on these key intuitions, we then
present a three-step FL backdoor tracing and mitigation frame-
work, as shown in Fig. 5. Specifically,

Step 1. The server obtains the output vectors of the trapped
sample on the global model in each round and evaluates the
similarity with the released model’s output vector. Given the
similarity measurements, we utilize the ensemble of various
anomaly detection algorithms to find conspicuous change
points and mark them as attack rounds.

Step 2. We analyze the training records in attack rounds
and calculate the occurrence statistics of each participant to
find suspicious ones.

Step 3. We subtract all the local updates of the suspicious
attackers from the release model to eliminate the hidden
backdoor in a distillation manner.

V. DETAILED DESIGN FOR MODEL REMEDY

We introduce the technical details of the three steps for
remedying the released model from the stealthy backdoor.

A. Identifying Attack Rounds

The 1st step utilizes a trapped poisoned sample dneg as the
“bait” to actively induce the misbehavior (somewhat deviated
prediction) of all the intermediate backdoored global models
from all FL rounds. Initially, all rounds are suspicious, and
the ground evidence is the prediction output of the poisoned
sample on the released model wT , termed the guilty output vp.
As a result, measuring the similarity between those interme-
diate models’ output (i.e., vt) on the poisoned sample and the
guilty output is the crux here. Since the outputs are vectorized



representations3 of dneg , we comprehensively consider their
directional, numerical, and probabilistic similarity:

• We use Cosine Similarity to measure an output pair’s
directional similarity in multidimensional space:

CS(vp, vt) =
vTp · vt

∥vp∥ · ∥vt∥
(1)

• We adopt the Euclidean Distance for numerically measure
output vectors’ similarity:

D(vp, vt) =

√√√√ |vt|∑
i

(vp,i − vt,i)2 (2)

• For finer-grained depiction of feature vectors’ similarity,
we treat each vector as a label distribution and use Jensen-
Shannon Divergence to measure entropically similarity:

JSD(vp, vt) =
1

2

[∑
vp · log

2vp
vt + vp

+
∑

vt · log
2vt

vp + vt

]
(3)

For simplicity, we denote the three measures as CS(vt),
D(vt), and JSD(vt), respectively.

Considering the backdoor inheritance property (§ IV-B),
a higher similarity could merely indicate the corresponding
model has a backdoor. It’s the change points of the simi-
larity that indicates a possible backdoor strengthen behavior
(i.e., attack round). From the perspective of time series, the
trend changing can be identified by the first-order differences
∆ST−1 = {∆s1, . . . ,∆sT−1}, where ∆st = st+1 − st and
st = {CS(vt), D(vt), JSD(vt)}.

Generally, the similarity changes should be smooth for
benign rounds, while abrupt shifts can be indicators of attack
involvement. Although there exists many anomaly detection
techniques, they predominately rely on supervised or semi-
supervised learning, which are well-suited in the backdoor
contexts as no label knowledge is known in prior. To accom-
modate detection sensitivity and accuracy, we propose to build
our similarity anomaly detector via ensemble unsupervised
learning. In particular, we consider the joint factors from local
to global view with distance, density, and isolated character-
istics:

• OC-SVM (OC) [33]. We estimate a non-linear decision
boundary based on appropriate kernel functions (Gaus-
sian kernel function) and soft margins to find anomaly
points. The rounds excluded by the hyper-plane are
considered distance outliers.

• Local Outlier Factor (LOF) [34]. We compute the local
density of each point and estimate its density deviation
with respect to its temporal neighbors. By checking the
density deviation point-by-point, those with significantly
smaller densities than neighbors are identified as outliers.

• Isolation Forest (IF) [35]. Using the three similarity
channels as the branch features, we build a bunch of
decision trees through random feature assignment and

3We use the output of the last layer in the deep model for feature
representation.

split value selection (in the range of minimum and
maximum values). This random partitioning of features
will render shorter paths in trees for the anomaly rounds,
thus distinguishing them from the other points.

We fuse the detection results using majority voting, namely,
a round with more than two detectors identifying its similarity
as an anomaly is considered an attack round.

B. Identifying Attackers

Since attack round selection and participant selection are
both random, a participant’s frequent occurrence in identi-
fied attack rounds reflects its probability of being malicious.
Formally, we first present behavior discrepancies between
attackers and benign participants in attack rounds. Assume
that the FL task contains N participants, and Na of them are
attackers, where Na ≪ N (E.g., 3 attackers in 100 partici-
pant. A small ratio of attackers is sufficient for an effective
backdoor injection, so smart attackers wouldn’t take the risk
of constructing a large group). In each round, we assume
that m participants are randomly selected to train a local
model, and there include ma attackers in those attack rounds,
where ma ∈ [0,min {m,Na}] and N,Na,m,ma ∈ N+.
Hence, for each attack round, the occurrence probability of a
malicious and benign participant is pa = ma

Na
and pb =

m−ma

N−Na
,

respectively.
For an effective attack round, OMBA requires at least half of

all the attackers to involve for sufficient poisoning knowledge
injection, which gives pa = 0.5. Given that Na > ma, we also
have pb <

m
N , which denotes the participant selection ratio of

FL and suggested to be ≤ 10% [2] [36]. Then, we can have
that, empirically, pa > 5 ·pb. Observing the co-occurrence of a
participant of nc times in all the attack rounds, the probability
for it to be an attacker and a benign participant is (pa)

nc

and (pb)
nc , respectively. In practice, even nc = 2 makes the

probability of the suspect being an attacker 25 times than being
a benign one.

With this insight, we then propose to estimate the co-
occurrences of all participants in the identified attack round
and mark those appearing more than two times as attack-
ers. Actually, an effective OMBA requires a higher the co-
occurrences of the attacker, more details in Appendix B1.

C. Mitigating Backdoor

The attackers try to inject the backdoor into the global
model by uploading the poisoned models in aggregation. With
attack round and attackers identified, we could remedy the
backdoor by subtracting the corresponding poisoned updates.

Assume that in a round (say tth), each participant k trains
the global model wt with its data and uploads the updates
∆wt+1

k to the server. The server collects these local updates
and aggregates a new global model by

wt+1 = wt +
1

|St|
∑
k∈St

∆wt+1
k , (4)



St is participants set in round t. After T rounds, we can obtain
a global model

wT = w0 +

T∑
t=1

1

|St|
∑
k∈St

∆wt
k. (5)

In the attack rounds Ta, some attackers At, t ∈ Ta try to
inject the backdoor into the global model, the process can be
described as:

wT = w0 +

T∑
t=1

1

|St|

 ∑
k∈St\At

∆wt
k +

∑
k′∈At

∆wt
k′


= w0 +

T∑
t=1

1

|St|
∑

k∈St\At

∆wt
k +

∑
t∈Ta

1

|St|
∑

k′∈At

∆wt
k′ ,

(6)
when t /∈ Ta, At = ∅.

Intuitively, we repair the poisoned global model by directly
subtracting all the poisoned local updates. The process can be
written as:

ŵ = wT −
∑
t∈Ta

1

|St|
∑

k′∈At

∆wt
k′ = w0 +

T∑
t=1

1

|St|
∑

k∈St\At

∆wt
k,

(7)
Moreover, we try to make the repaired model more approxi-

mate to the ‘healthy’ model which is trained by the left benign
participants. We scale the ŵ with a parameter ρ,

ŵ = ρ

w0 +

T∑
t=1

1

|St|
∑

k∈St\At

∆wt
k

 . (8)

Theorem 1 (Bounding the difference). Assume some attackers
At have poisoned the global model wT by performing several
shots in rounds Ta. After mitigating the backdoor, the differ-
ence between the repaired model and the ‘healthy’ model can
be bounded as

0 ≤ |wT
healthy − ŵ| ≤ |Ta|∆w. (9)

Theorem 1 shows the difference bound between the repaired
model and the ‘healthy’ model. The ‘healthy’ model represents
the model trained by the rest benign participants. The upper
bound of the difference means that the repaired model removes
all the local updates in Ta, even if they are from benign
participants. The lower bound means our method removes the
backdoor in the global model and the repaired model has the
same effect as training with the benign participants. The proof
of Theorem 1 is shown in Appendix C.

Finally, we conclude the tracing and mitigation procedure
in Algorithm 1.

VI. EXPERIMENTS

We evaluate the performance of the framework by compar-
ing it with SoTA defenses under different attack settings.

Algorithm 1: Tracing & mitigation

Input : Current model wT , a trapped poisoned
sample dneg , historic global models wt and
local updates ∆wt

k from participants St

(t = 1, · · · , T − 1).
Output: Repaired model ŵ.
// Step 1: Identifying attack rounds

1 vp = f(wT ; dneg);
2 foreach round t = 1, 2, . . . T − 1 do
3 vt = f(wt; dneg) ;
4 st = {CS(vp, vt), D(vp, vt), JSD(vp, vt)};
5 ∆st = st+1 − st;

6 ∆ST−1 = {∆s1, · · · ,∆sT−1};
7 Ta = EnsembleDetecetor(∆ST−1);
// Step 2: Identifying attackers

8 Statistic the frequency Qk of each participant k in Ta;
9 At = {k|Qk ≥ Qthreshold}, t ∈ Ta;
// Step 3: Mitigating backdoors

10 ŵ = ρ
(
wT −

∑
t∈Ta

1
|St|

∑
k′∈At ∆wt

k′

)
;

11 return ŵ

A. Setup

1) Datasets: We consider two widely used public dataset
MNIST [37] and Fashion-MNIST (FMNIST) [38], both of
which consists of 60,000 training samples and 10,000 test
samples, each sample has the same format and the size is
28 × 28. The MNIST dataset is comprised of 10-class hand-
writing digits, and FMNIST includes some fashion products
from 10 categories.

2) FL Setup: We run the FL training process with 100
participants for these two datasets. Following the previous
work [2] [16], in each round, we select 10 participants uni-
formly at random. We use SGD and trains for 2 local epochs
with the local learning rate of 0.1 and the local batch size of
64. And we use the vanilla aggregation method called FedAvg.

3) Data Distribution: FL often presumes non-IID data
distribution across parties. Here, we use a Dirichlet distribu-
tion with the hyperparameter α = 0.5 to generate the data
distribution following the setups in [7] [9].

4) Metrics: We use the averages of Precision, Recall, and
F1-Score across multiple tests to evaluate the performance of
identifying the attack rounds and the attackers. We evaluate
the effectiveness of eliminating the backdoor by observing the
attack success rate (ASR) and benign accuracy (BA). ASR
is the accuracy of the model on the samples with backdoor
triggers. BA is the accuracy of the model on benign samples.

B. Backdoor Attacks and Defenses in FL

The goal of the backdoor attack is to change the global
model’s behavior on some data samples with certain backdoor
triggers while maintaining high performance on benign sam-
ples. Here, we introduce the basic settings of both backdoor
attacks and defenses.



(a) MNIST (b) FMNIST

Fig. 6. The samples with backdoor trigger in MNIST and FMNIST. The
pixels in the upper left corner is the backdoor trigger.

1) Backdoor Trigger: For image classification tasks, we
consider the basic pixel backdoor by adding certain pixels into
the training samples [23]. Specifically, we set that the attacker
modifies 9 pixels of the upper left corner to form a backdoor
trigger, as shown in Fig. 6. The original label of these samples
will be swapped into “3”. For FMNIST, the trigger pattern is
the same as the MNIST, but the label will be swapped into
“T-Shirt”. During the local training phase, the attacker would
train the model with both original images and the images with
the backdoor trigger at the same time. We use the poisoning
ratio r to control the fraction of samples added per training
batch [9], and we set r = 20/64 for all datasets here.

2) Injection Strategies: CBA and DBA are taxonomy for
backdoor attacks according to whether the trigger is injected
by each attacker completely (centralized) or partially (dis-
tributed). We test the performance under two typical trigger
injection strategies in the literature:

• Centralized backdoor attack (CBA) [7]. All attackers
use the same global trigger to poison their local data.
Local models are trained by these samples and uploaded
to the server to poison the global model.

• Distributed backdoor attack (DBA) [9]. The attackers
use arbitrary parts of the global trigger to poison the local
data. We separate the 9-pixel backdoor trigger into 3 local
triggers, each containing 3 pixels and embedded in the
upper left corner. Local models are then trained with the
injection of these complementary triggers, together with
planting the complete trigger in the global model.

3) Backdoor Strategies: Since existing backdoor attacks
fall short on stealthiness, we use the OMBA proposed in § III
as the adversary setting. The key factors of OMBA are: The
number of attackers Na that collusively conduct on-off attacks;
The number of shots Ns that some attackers are active in
the FL round to inject backdoor; Shot interval I that defines
the number of silent rounds between two attack round. We
will vary the first two factors during experiments to test the
detection performance.

4) Backdoor Defenses: Here, we choose some representa-
tive backdoor defense methods as baselines:

• FAA-DL [18]. A clustering-based detection method using
OC-SVM to filter the anomaly updates in the training
process. To better compare, we only focus on the anomaly
detection results.

• Krum [13]. A robust aggregation method by calculating
the distance and filtering the local model parameters

which are far away from their neighbors. Here, we only
focus on the outliers filtered out by this strategy.

C. Performance Analysis

We test the performance of each step in the framework under
CBA and DBA.

1) Identifying the attack rounds: We set Na = 3 for each
round, and I = 3 and change Ns to verify the effectiveness.
The attackers start to perform a shot at 40th round when the
model gradually gets convergent. Three metrics are used to
evaluate whether the 1st step can correctly identify most attack
rounds. To better demonstrate the effectiveness, we average the
results with the same setting. The result is shown in Table II.
Comparing the FAA-DL and Krum, our methods have a better
performance in detecting the attack rounds across all datasets
in all attack settings.

In CBA, the precision of our method is maintained at around
80%, and 31.26% higher than other methods. Notice that
the recall is decreased to about 30% and still higher than
other baselines with the increment of Ns. The reason for the
decrement is that with the increment of Ns, the backdoor has
already been injected into the global model, and most of the
shots can not be detected since they can not cause significant
changes in the global model.

In DBA, all the performance has decreased compared with
CBA. The reason for the decrement is that the DBA only
injects some of the backdoor fragments and causes minor
modifications in each shot. Nevertheless, our method is still
effective and achieves around 60% in all metrics in detecting
the attack rounds.

Hence, we verify that finding change points of the poisoned
sample’s prediction similarity is more effective than clustering-
based and distance-based methods in different attacks.

2) Identifying the attackers: In this part, we show the
effectiveness of the 2nd step by varying Na. For a fair
comparison, all methods use the same input from the 1st
step. Here, we set Ns = 5 and I = 3, and start to attack
at 40th round. The results are shown in Table. III, our method
based on probability analysis is more effective than other
baselines (average 13.13% higher). The reason is that our
method does not directly analyze the local updates but focuses
on the behavior of the attackers. Directly analyzing the local
updates can easily result in evasion of detection, see the
performance of FAA-DL and Krum in CBA and DBA. The
fine-crafted backdoor model and stealth attack methods (i.e.,
DBA) only require a minor change and perform more similarly
to other models, the methods based on clustering or distance
measurement are not easy to detect. Furthermore, we can
observe that under different attack settings, our method can
still achieve the highest performance (∼50%) in all cases.

3) Mitigating backdoor: To evaluate the effectiveness of the
3rd step, we consider the performance changes of the model
before and after mitigating backdoor attacks. We adopt the
suspicious attackers in the second step and remove all the local
updates uploaded from them by subtracting and scaling. As
shown in Table. IV, the backdoor can be effectively removed



TABLE II
AVERAGE PERFORMANCE OF IDENTIFYING THE ATTACK ROUNDS WITH DIFFERENT NUMBER OF SHOTS (NS ) ON TWO DATASETS IN CBA AND DBA.

Attack Scheme Dataset NS
Precision Recall F1-Score

ours FAA-DL Krum ours FAA-DL Krum ours FAA-DL Krum

CBA

MNSIT

3 0.8167 0.4738 0.4089 0.5833 0.5000 0.3333 0.6917 0.4807 0.3958
5 0.8452 0.4549 0.3782 0.6071 0.4720 0.3622 0.7636 0.4638 0.3645
7 0.8694 0.4861 0.2958 0.5048 0.4471 0.4286 0.5428 0.4537 0.3621

10 0.8600 0.4797 0.2451 0.4812 0.4300 0.3200 0.4542 0.4426 0.3015
12 0.8650 0.4322 0.2141 0.4833 0.4533 0.2500 0.4882 0.4332 0.2313

FMNSIT

3 0.8611 0.4556 0.4980 0.6333 0.4444 0.4333 0.7302 0.4443 0.4385
5 0.8667 0.4600 0.3904 0.5667 0.3186 0.4000 0.6988 0.4255 0.3920
7 0.8720 0.4571 0.3212 0.4286 0.4286 0.4143 0.6558 0.4051 0.3529

10 0.8600 0.3855 0.3160 0.3641 0.3260 0.2016 0.4371 0.3704 0.3020
12 0.8833 0.3667 0.3044 0.3533 0.3333 0.2516 0.3683 0.3458 0.2727

DBA

MNSIT

3 0.6733 0.4067 0.3231 0.6333 0.4811 0.3333 0.6523 0.4239 0.3233
5 0.7267 0.4000 0.3123 0.7000 0.2400 0.2000 0.7265 0.2489 0.3121
7 0.7867 0.3999 0.3202 0.6000 0.2190 0.1667 0.6726 0.2979 0.2214

10 0.7914 0.4952 0.3032 0.4400 0.1300 0.1700 0.5802 0.2373 0.2560
12 0.7929 0.4800 0.2916 0.4000 0.1483 0.1833 0.5253 0.2137 0.2106

FMNSIT

3 0.6357 0.3657 0.3100 0.6333 0.4667 0.3333 0.6339 0.4286 0.3138
5 0.7967 0.3860 0.3231 0.6202 0.4200 0.3600 0.6729 0.4099 0.3426
7 0.8010 0.4167 0.3133 0.6000 0.3149 0.4286 0.6803 0.3262 0.3529

10 0.8533 0.4157 0.3256 0.4000 0.3017 0.3000 0.5390 0.3543 0.3113
12 0.8560 0.3676 0.2954 0.4167 0.2167 0.2500 0.5530 0.2833 0.2527

TABLE III
AVERAGE PERFORMANCE OF IDENTIFYING THE ATTACKERS WITH DIFFERENT NUMBER OF ATTACKERS (Na) ON TWO DATASETS IN CBA AND DBA.

Attack Scheme Dataset Na
Precision Recall F1-Score

ours FAA-DL Krum ours FAA-DL Krum ours FAA-DL Krum

CBA

MNSIT

3 0.6917 0.4630 0.2222 0.8333 0.5283 0.5833 0.7470 0.5061 0.3743
5 0.6933 0.5413 0.1667 0.6000 0.5200 0.5128 0.6378 0.5370 0.3246
7 0.6360 0.5260 0.1574 0.5220 0.5067 0.5072 0.5358 0.5178 0.3203

10 0.5267 0.4933 0.1709 0.4800 0.3933 0.4333 0.4943 0.4163 0.3273

FMNSIT

3 0.6333 0.5935 0.1347 0.6333 0.4815 0.4040 0.6333 0.5149 0.2020
5 0.6433 0.5889 0.1458 0.6000 0.4889 0.4375 0.6196 0.5270 0.2187
7 0.7667 0.6167 0.1319 0.5714 0.4000 0.3958 0.6025 0.4571 0.1979

10 0.7933 0.4211 0.1347 0.5400 0.4000 0.4040 0.5868 0.4016 0.2020

DBA

MNSIT

3 0.6200 0.4606 0.1944 0.7325 0.4848 0.2286 0.6747 0.4726 0.2917
5 0.5533 0.4010 0.1709 0.5600 0.4167 0.2692 0.5500 0.3984 0.2564
7 0.6933 0.3806 0.1836 0.4286 0.3611 0.2255 0.4771 0.3484 0.2754

10 0.5400 0.3359 0.1778 0.4160 0.4103 0.2500 0.4764 0.3260 0.2667

FMNSIT

3 0.6200 0.4342 0.1049 0.6312 0.4652 0.3148 0.6275 0.4428 0.1574
5 0.7933 0.4597 0.1250 0.5200 0.4444 0.3750 0.5752 0.4395 0.1875
7 0.6000 0.3622 0.1079 0.4571 0.3333 0.3238 0.4696 0.3284 0.1619

10 0.4600 0.3714 0.1010 0.4100 0.3286 0.3030 0.4327 0.3622 0.1515

from the global model at the cost of 3 ∼ 10% BA loss.
Specially, we observe that, in DBA, there are some backdoor
remnants, and occurs a significant degradation of BA. The
reason is that DBA uses multiple backdoor fragments to attack,
but grouped together to be effective. Different from the CBA
using one same global trigger, eliminating the backdoor in
DBA needs to collect all kinds of local triggers. Our method
can find most of them and reduce the ASR below 20%.

Moreover, we use Grad-CAM [39] to provide a visualization
of the model remedy. As shown in Fig. 7, the area with
red color represents the features that are more important for
the model decision. We find that our method can weak the

models’ attention on the backdoor trigger, and make the model
perform more similarly to the clean model. We conclude that
our method can achieve a larger drop in attack success rate
by trading off a small decrease in benign accuracy.

D. Ablation study

In order to illustrate the effectiveness of each component in
1st step, we conduct the ablation studies on MNIST under the
CBA scheme. We consider the different compositions of three
similarity metrics and algorithms. The settings and results are
shown in Table. V. We notice that each component (similarity
metric or algorithm) in our design is effective since the incor-



TABLE IV
BENIGN ACCURACY (BA) AND ATTACK SUCCESS RATE (ASR) BEFORE

AND AFTER MITIGATING BACKDOOR ATTACKS.

Dataset Models BA ASR

MNIST

Clean Model 99.67% 0.45%
Backdoored Model (CBA) 98.51% 97.57%

Repaired Model (CBA) 96.90% 5.57%
Backdoored Model (DBA) 98.92% 98.42%

Repaired Model (DBA) 95.46% 17.98%

FMNIST

Clean Model 89.56% 0.32%
Backdoored Model (CBA) 87.49% 99.50%

Repaired Model (CBA) 82.17% 8.03%
Backdoored Model (DBA) 85.30% 99.80%

Repaired Model (DBA) 79.85% 18.89%

Clean Sample Poisoned Sample

Clean 

Model

Backdoored 

Model

Ours

(predict 2)

(predict 2) (predict 3)

(predict 2) (predict 2)

(predict 2)

Clean Sample Poisoned Sample

(predict 5) (predict 5)

(predict 5) (predict 3)

(predict 5) (predict 5)

Fig. 7. The visualization of the models’ attention before and after eliminating
the backdoor by using Grad-CAM in two MNIST samples.

poration of each component can achieve higher performance
than the counterpart built without the component.

Similarity. We use all algorithms and leave them unchanged
to analyze the effectiveness of similarity metrics. From the
table, the JSD has a larger impact on the performance than the
others, which means the probabilistic similarity fluctuations
can better reflect the attack.

Algorithms. We use all the similarity metrics and compare
the effectiveness of each algorithm. The three algorithms alone
are not effective, but their compositions can achieve significant
performance improvement. Moreover, there is an interesting
point to note. The metrics are more important than algorithms
in the performance increment, the decoupling of anyone metric
can cause larger performance degradation compared to that of
any algorithm. It is indicated that the similarity estimation is
more critical in identifying attack rounds.

VII. DISCUSSION

Assumptions on the defender. In our method, we assume
that the defender can access to all the global models and
record all the intermediate training results. It is essential for the
server to store these training results for future authentication,
audit [40], and profit allocation [41], although this may require

TABLE V
ABLATION STUDY OF DIFFERENT METRICS AND ALGORITHMS IN

IDENTIFYING ATTACK ROUNDS.

Similarity Algorithms Performance

CS D JSD OC IF LOF Precision Recall F1-Score

✓ ✓ ✓ ✓ 0.5095 0.5214 0.5118
✓ ✓ ✓ ✓ 0.5833 0.5143 0.5420

✓ ✓ ✓ ✓ 0.6643 0.5000 0.5515
✓ ✓ ✓ ✓ ✓ 0.6405 0.5500 0.6258
✓ ✓ ✓ ✓ ✓ 0.6667 0.5786 0.6370

✓ ✓ ✓ ✓ ✓ 0.6767 0.5429 0.6253

✓ ✓ ✓ ✓ 0.5238 0.4571 0.5069
✓ ✓ ✓ ✓ 0.5714 0.4286 0.5495
✓ ✓ ✓ ✓ 0.5911 0.5071 0.5741
✓ ✓ ✓ ✓ ✓ 0.7500 0.5714 0.6503
✓ ✓ ✓ ✓ ✓ 0.7738 0.5729 0.6888
✓ ✓ ✓ ✓ ✓ 0.7262 0.5674 0.6352

✓ ✓ ✓ ✓ ✓ ✓ 0.8452 0.6071 0.7636

a high storage overhead. Besides, a poisoned sample can be
easily distinguished from the misclassified samples since it
always shows a target manner on the backdoored model.

Co-occurrences of the attackers. Our method can identify
the attackers based on the co-occurrence difference between
benign participants and attackers. However, if all the attackers
have the same frequency as benign participants, our method
might not be effective. In our consideration, high frequency
can eliminate the conflicts between attackers and inject the
backdoor into the global model with as fewer shots as possible.
We present the attack process in different frequencies of
attackers in Appendix B1.

VIII. CONCLUSION

In this work, we propose a framework to mitigate stealthy
backdoor attacks in typical FL processes. We design a novel
on-off multi-shot attack form to mimic the attack strategy
of smart attackers and present a sequence of observations
on its stealthiness against SoTA defenses. In view of such
tricky threats, we provide a remedy based on jointly identi-
fying attack round, attackers, and mitigating the influence via
removing certain malicious ingredients. Experimental results
show that our method is effective in each step. Moreover, we
present the ablation study on the first step and evaluate the
importance of each component.
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APPENDIX

A. HFLens on local models

Here, we report the visualization of all local models projec-
tions by using t-SNE. We generate the model feature vectors
of the local models as described in § III-C2, then perform
t-SNE on vectors to generate the 2D projections (shown in
Fig. 8). Each point in the 2D space represents the projection
of the local models with the linked black curve representing
the performance evolution trend. The red points representing
the poisoned local models are mixed with the green points and
are hard to be categorized as outliers. Besides, the projections
of the local models can also verify that the local models may
diverge in the training process when the data is non-IID. We
conclude that the method based on t-SNE is ineffective in
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Fig. 8. Visualization on the 2D projection of all
the local models in each round using t-SNE.
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Fig. 9. Impact of the co-occurrences of the attack-
ers in 5 shots.
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Fig. 10. The training process of the attack rounds
in non-convergence phase.
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(a) I = 0.
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(b) I = 1.
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(c) I = 3.
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(d) I = 5.
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(e) I = 7.
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(f) I = 9.

Fig. 11. Impact of different shot interval (I) in the performance of OMBA.

distinguishing whether the local model is from the benign
participants or the attackers.

B. More experiments in OMBA

1) Impact of the co-occurrence: We explore the perfor-
mance of the backdoor injection by varying different co-
occurrence. For a fair comparison, we set that there are
Ns = 5 shots in round 40th, 44th, 48th, 52nd, and 56th. And
each attack round contains 3 attackers colluding to upload
the poisoned local updates. We note the variable fo as the
occurrence frequency of each participant. For example, fo = 1
means that an attacker can only appear once in 5 attack rounds,
and it needs 3Ns

fo
= 15 different attackers to complete the

attack. For different fo, the speed of the backdoor injection is
shown in Fig. 9. With the increasing fo, the backdoor can be
injected into the global model with fewer shots. Moreover, the
injected backdoor can not easily be weakened by the benign
local updates in the following training rounds. The reason
is that there are some conflicts between different attackers,
which makes the feature of the injected backdoor not intense

as benign samples, and easily forgotten by the global model.
In summary, setting a low fo in OMBA is less effective since it
needs more attackers but obtains a weaker backdoored global
model.

2) Impact of shot interval (I): We explore the impact of
different I in OMBA. We set there are Ns = 5 shots and
Na = 3, each attacker would perform 5 shots starting from
round 40th. Fig. 11 shows the results. A small I indicates
a more intensive attack, the ASR is rapidly increasing but a
sudden drop in benign accuracy according to Fig. 11(a), 11(b).
A large I (see Fig. 11(d), 11(e), and 11(f)) needs more shots
to obtain an obvious ASR increment for a long interval may
cause the backdoor gradually weakened by benign participants.
We conclude that a proper I can strike a compromise between
stealthiness and effectiveness.

3) Impact of the attack timing: In this part, we explore a
reasonable time for attackers to inject the backdoor. The attack
time can roughly divide into two phases: the non-convergence
phase and the convergent phase. Fig. 10 shows the training
process of the attackers trying to inject the backdoor into
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(a) Ns = 3

0 20 40 60 80 100
Communication round

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Benign Accuracy
Attack Success Rate
Attack Round

(b) Ns = 7
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(c) Ns = 12

Fig. 12. Impact of different number of attack rounds (Ns) in the performance of OMBA.
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(a) Na = 1
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(b) Na = 5
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(c) Na = 10

Fig. 13. Impact of different number of attackers (Na) in the performance of OMBA.

the global model by adopting OMBA in the non-convergence
phase. We can observe that the backdoor injection fails since
the global model is in a dilemma between the benign and
poisoned local updates in the non-convergence phase.

4) Impact of Ns: We present the performance of OMBA in
different Ns. More shots will make the backdoor injected into
the global model more solid and not easily forgotten. Fig. 12
shows the results of different Ns, fewer shots might cause
the backdoor not be successfully injected, and too many shots
are unnecessary since the backdoor has been embedded into
the global model. We conclude that the ‘smart’ attacker might
perform as fewer shots as possible to embed the backdoor into
the global model.

5) Impact of Na: We explore the impact of different Na in
OMBA. More attackers colluding in an attack round will make
the backdoor injected into the global model more quickly.
However, too many attackers are unrealistic and may cause
an obvious benign accuracy drop according to our exploration
shown in Fig. 13.

C. Proof of Theorem 1

In this part, we show the proof of the Theorem 1.

Proof. Based on Equ. 6, we use ∆wt for the expectation of
the local updates from the benign participants in round tth.
The ‘healthy’ model trained by the rest benign participants is:

wT
healthy = w0 +

T∑
t=1

1

|St| − |At|
∑

k∈St\At

∆wt
k︸ ︷︷ ︸

∆wt

.
(10)

We assume that the initialization model w0 = 0, we can
bound the difference between wT

healthy and ŵ:

|wT
healthy − ŵ|

=

∣∣∣∣∣∣(1− ρ)w0 +
∑
t∈Ta

(
1

|St| − |At|
− ρ

|St|

) ∑
k∈St\At

∆wt
k

∣∣∣∣∣∣
=

∣∣∣∣∣(1− ρ)w0 +
∑
t∈Ta

[
1− ρ(1− |At|

|St|
)

]
∆wt

∣∣∣∣∣
=

∣∣∣∣∣
Ta∑
t

[
1− ρ(1− |At|

|St|
)

]
∆wt

∣∣∣∣∣
(11)

Let ∆w = sup∆wt, we can get the upper bound:

|wT
healthy − ŵ| ≤

∑
t∈Ta

∆wt ≤ |Ta|∆w. (12)

If ρ = |St|
|St|−|At| , we can get the lower bound:

|wT
healthy − ŵ| ≥ 0. (13)

Hence, we bound the difference between the repaired model
and the ‘healthy’ one, and finish the proof of Theorem 1.

0 ≤ |wT
healthy − ŵ| ≤ |Ta|∆w. (14)
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