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Abstract

Transforming the multi-round vanilla Federated Learning (FL) into
one-shot FL (OFL) significantly reduces the communication burden
and makes a big leap toward practical deployment. However, we
note that existing OFL methods all build on model lossy reconstruc-
tion (i.e., aggregating while partially discarding local knowledge
in clients’ models), which attains one-shot at the cost of degraded
inference performance. By identifying the root cause of stressing
too much on finding a one-fit-all model, this work proposes a novel
one-shot FL framework by embodying each local model as an in-
dependent expert and leveraging a Mixture-of-Experts network to
maintain all local knowledge intact. A dedicated self-supervised
training process is designed to tune the network, where the sam-
ple generation is guided by approximating underlying distribu-
tions of local data and making distinct predictions among experts.
Notably, the framework also fuels FL with flexible, data-free ag-
gregation and heterogeneity tolerance. Experiments on 4 datasets
show that the proposed framework maintains the one-shot effi-
ciency, facilitates superior performance compared with 8 OFL base-
lines (+5.54% on CIFAR-10), and even attains over x4 performance
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gain compared with 3 multi-round FL methods, while only requir-
ing less than 85% trainable parameters. Our code will be available
at https://github.com/zenghui9977/IntactOFL.
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1 Introduction

As a popular machine learning paradigm featured with privacy pro-
tection, Federated Learning (FL) enables multiple distributed clients
to fuse local knowledge collaboratively without disclosing their raw
data [27, 29, 48, 53]. Basically, FL lets clients independently train
local models, collects the local knowledge for global aggregation,
and distributes the aggregated model for iterative local training
and aggregation. However, such multi-round client-server interac-
tion would incur a heavy communication burden (e.g., more than
250 GB for simple VGG19 model [40]) and coordination costs (e.g.,
client selection for capability alignment [1]), criticized for being
prohibitive for real-world implementation [5, 7, 49].
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Figure 1: Visualization of the experimental results of the
correct-prediction domains of clients’ local models and mod-
els learned with existing OFL methods by T-SNE. Large sub-
areas of the learned knowledge of local models are discarded
with knowledge distillation and parameter optimization.

As aremedy, one-shot FL (OFL) has emerged recently by reducing
the interaction of vanilla FL to just one communication round [12].
In fact, OFL is believed to be well-suited for the popular model
market scenarios [49], where users are willing to sell local-trained
models but are reluctant to join in the redundant training process.
Technically, existing designs of OFL, now in its infant age, could
be categorized into knowledge distillation methods (KD) [16, 22,
42, 49, 51] and parameter optimization methods [8, 36], both works
in a way of aggregating all local models into one global model.
Wherein, KD methods transfer knowledge from local models to a
global model with assumed-to-be-available auxiliary data, while
the latter one focuses on designing dedicated averaging [29, 47],
clustering [8], and solving Pareto optimum [36] for one-shot.

Unfortunately, the one-shot gain of existing OFL methods comes
at the cost of degraded learning performance. The above proposals
all try to learn a one-fit-all global model given local models, which
is essentially a model reconstruction process, accompanied by
knowledge loss. The visualization in Figure 1 shows the differences
in correct-prediction domains (i.e., samples that are correctly pre-
dicted) between local models and existing OFL models. Notably,
both knowledge distillation and parameter optimization methods
reconstruct the knowledge space in the union of already-learned
local knowledge, while large sub-areas (i.e., those not covered after
OFL) are discarded during aggregation. As a result, samples falling
in the discarded sub-areas would experience wrong inference with
existing OFL models.

The FL paradigm would be more fantastic if the one-shot is at-
tained without performance degradation. For this purpose, this
work presents the novel design Intact One-shot Federated Learn-
ing (IntactOFL), with the key idea of synergizing the knowledge
of local models rather than reconstructing it. By regarding each
local model as an expert, IntactOFL employs the Mixture of Ex-
perts (MoE) [18] architecture to retain all the local knowledge,
where a gating network is planted for flexible expert/local model as-
signment during inference (i.e., having which local models to make
prediction on a specific sample), thus relieving the one model-fit-all
pitfall. With the expert model frozen, the gating network, as the
core in our one-shot MoE network, is trained in a self-supervised
way based on auxiliary sample generation. Specifically, a generator
is designed to construct samples that, on one hand, mimic the local
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data with the pseudo label approximating the prediction of local
experts, and on the other hand, are hard to predict by the MoE
network and thus fuel the optimization of it.

We elaborate on and highlight three advantages of IntactOFL:
First, in contrast to the previous OFL’s reconstruction-based design,
IntactOFL preserves all local models’ training efforts and utilizes
a lightweight gating network to essentially construct a dedicated
model for each sample (i.e., flexible aggregation). Second, it re-
quires no additional data or pre-trained models (i.e., data-free),
which well-suits the privacy-sensitive scenarios of FL, especially
compared to existing KD methods. Third, by focusing on the fusion
of knowledge rather than the aggregation of models, IntactOFL
could by nature handle heterogeneous clients with non-iid data
distribution and heterogeneous model architectures (i.e., hetero-
geneity tolerance).

Overall, our main contributions can be summarized as follows:

o We first identify the knowledge loss pitfall of existing OFL
methods, incurred by the reconstruction of the global model
from local models and appeal to synergizing knowledge
instead. We believe this could spur rethinking the default
way of performing aggregation in FL.

e We invent a novel one-shot learning framework, which at-
tains one-shot with NO performance degradation. Its techni-
cal novelty includes adapting the MoE architecture to inte-
grate all local models with no knowledge loss and the design
of self-supervised network training based on a distribution-
aware and informativeness-sensitive sample generator.

e The proposed IntactOFL is featured with no requirements
for additional auxiliary data, pre-trained models, data distri-
bution, and specific model architectures.

o Extensive experiments have evaluated the effectiveness, scal-
ability, and efficiency of IntactOFL, which consistently out-
performs 8 OFL baselines on 4 datasets with various hetero-
geneity settings.

2 Related Work
2.1 One-shot Federated Learning

One-shot FL is a variant of the FL that requires only one communica-
tion round between the server and clients. In OFL, the clients upload
well-trained local models to the server, and the server aggregates
these uploaded models to obtain a new global model [12]. Existing
methods in OFL can be categorized into knowledge distillation-
based and parameter optimization-based methods.

2.1.1 Knowledge Distillation-based. These methods are proposed
to use knowledge distillation (KD) to transfer the massive local
knowledge into one global model. They use the local models as
teachers, and use the auxiliary public dataset or model to train a stu-
dent model. [12] firstly proposed to use the KD and use the ensem-
ble prediction of local models as the teacher’s output. FedKT [22]
designs a two-tier PATE structure [30] relying on public data to
improve the ensemble of local models. To alleviate the label skews,
FedOV [9] adopts open-set voting in OFL to enhance the general-
ization ability of the ensemble. However, these methods require
the auxiliary public data or pre-trained models should be simi-
lar to the original task, which limits the application in real-world
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scenarios, especially in privacy-sensitive scenarios such as biomed-
ical domains, since there might be no available data or models. To
this end, some methods try to utilize additional distilled data or
synthetic data instead of public data. [51] proposes transmitting a
distilled dataset to the server. DENSE [49] firstly proposes a data-
free OFL method through training a data generator to assist the KD
process. Co-Boosting [7] designs a mutually enhanced process to
synthesize high-quality samples and distillation models. Further-
more, FedCAVE [16] modifies the local learning task into training
a conditional variation auto-encoder (CAVE) and uses KD to com-
press the ensemble into a powerful decoder. The decoder can be
used to generate training samples for the global model. And the
FedCADO [42] adopts the popular diffusion models to get the syn-
thetic data. Some dataset distillation-based one-shot methods, such
as FedD3 [35] and FedMD [37], transmit the locally distilled dataset
rather than models to the server in a one-shot manner. However,
none of the aforementioned methods can fully use the knowledge
from local clients, since the KD methods have been criticized as
inefficient [50], and existing an intractable performance gap.

2.1.2  Parameter optimization-based. These methods aim to search
for an optimum across all local models by analyzing the local model
parameters. Clearly, the traditional statistic aggregation methods,
such as FedAvg, Median [44], and Krum [3] can still apply in OFL
but achieve low performance. k-FED [8] runs a variant of Lloyd’s
method for k-means clustering and obtains an aggregated model
through one round iteration of exchanging local cluster means.
MA-Echo [36] tries to get the Pareto optimum of the local clients
via exploring common harmonized optima. However, directly an-
alyzing the model parameters requires all local models should be
homogeneous, whose setting is not practical in real-world hetero-
geneous scenarios. And the optimum of the parameters can not
represent the optimum of the model performance, in most cases,
the performance degrades obviously [49]. Besides, none of these
methods support the model heterogeneity, i.e., different clients have
different model architectures [23]. It is challenging to get the opti-
mum from completely different architecture parameters.

2.2 Mixture of Experts

The MoE [6, 18] is an ensemble learning framework that combines
multiple expert networks to enhance the overall performance of
a model. Each expert in an MoE model is specialized in handling
specific types of data or tasks. A gating network, which is a cru-
cial component of MoE, dynamically routes input tokens to the
appropriate experts, ensuring that only relevant parts of the model
are activated for a given task. Based on this, several improvements
have been proposed to reduce the training cost [14, 32], or improve
performance on multi-tasks [6, 28]. Recently, MoE has become
promising again due to the appearance of Mixtral8x7B, which uses
the MoE for model scaling and achieves better performance than a
larger one. Moreover, GShard [20] uses MoE for scaling up large
models and managing models effectively. Switch Transformers [11]
introduces a model scaling method by utilizing the MoE to substi-
tute the FNN in Transformer, achieving better training efficiency
and model performance. MoE architecture can also be applied to
solve the multi-task or multi-modal problem. LLaMA-MoE [38]
build a series of MoE models based on LLaMA [39] with continual
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pre-training. MoE-LLaVA [25] adopt this architecture to achieve
high performance and fewer parameters in Large Vision-Language
Models (LVLM). Existing methods also introduce the MoE into FL,
and all these methods focus on solving the heterogeneity problem in
personalized FL [41]. PFL-MoE [13] views the global model and per-
sonalized local model as two experts and utilizes the MoE to achieve
better personalized performance and generalization. FedMoE [43]
tries to solve the model heterogeneity problem and uses the MoE
to weigh the representations of the global homogeneous model and
local personalized heterogeneous models. However, these methods
still adopt multi-round averaging, which suffers from performance
degradation as the parameter optimization-based OFL methods.
Contrarily, we adopt the MoE in OFL aggregation, focusing on
better leveraging the knowledge of local models.

3 Formulation and Design of IntactOFL

3.1 Learning Problem and Goal

Suppose that we have a set of clients C, with totally m = |C]| clients.
Each client ¢; € C possesses a local private data D = {(x;, y,-)};nk,
where my = |Dy| represents the local data quantity, x; is the ith
sample with the corresponding label y;. The original goal of OFL
is to train a single global model wg over D = Uj Dy in only one
communication round, which can be described as follows,

Z {’(f(Xi;Wg), yi)’ (1)

1
min L(wy) = —
W,
7 (x1,yi) €D

D
where ¢ represents the loss function corresponding to the OFL task,
for example, £ can be the cross-entropy function in the classification
task. f(xj; wy) is the prediction function that output the prediction
of x; when given the model parameter wg. In OFL, the server can
not directly access the data D = UZ’: D, and only well-trained
local models wy are accessed. To facilitate this, existing methods
mostly can be categorized into knowledge distillation-based and
parameter optimization-based methods.

For knowledge distillation-based methods, the well-trained local
models are integrated into an ensemble, and the ensemble model
acts as teacher to guide the global model (student). The ensemble
model can be defined as follows,

ECc W) = ) Bif (s we), @)
k=1

where f(x; wy) is the output of the input sample x given the local
model wy, while S is the weight of client c;. In most settings,
the Sy is assigned to f = % or f = mk/Z;.":1 mj. Relying on
the public auxiliary data or synthetic data, i.e., D 4, the distillation
process can be defined as follows:

min L) = s Y, ) Skl (5
(x1,yi) €Da

where the ¢ can be the Kullback-Leibler (KL) divergence function
corresponding to the distillation task. Notably, existing literature
has reported that the performance gap of knowledge distillation [41,
52], the key part is the distillation distance between the ensemble
and global model.

For parameter optimization-based methods, the global model wy
is the optimum output across all local models with optimization
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Figure 2: The workflow of IntactOFL. All clients perform local training and upload local models to the server only once. The
one-shot MoE network consists of a set of experts and a gating network. The server aggregates these local models into the
expert set and trains a gating network in a self-supervised manner. The key steps of each training epoch ¢t are: (1) Given a
random noise and pseudo label, the Generator g aims to generate auxiliary data that is similar to the local training data guided
by the current MoE network with L;;,}; (2) Using the auxiliary data after augmentation as the input of the MoE network and

updating the gating network by £!

train

mechanism A, that is wy = ﬂ({wk},’:‘:l). The objective of these

methods can be written as:

min L({wi}iL) = min A({wi kL), wg), (4
9 9

where A({wy}]" . wy) can be any distance functions or similar-
ity functions. When .ﬂ({wk}kmzl,wg) = ZZ‘:l PEWk — wg||2, the
global model is wy = Z/’C":l Pk Wi, which is the same as the vanilla
aggregation algorithms FedAvg in a one-shot manner. However,
these methods focus on processing the model parameter, which is
far away from the original OFL objective.

In IntactOFL, we aim to preserve all local models’ knowledge
through direct integration with MoE. We define the objective of
IntactOFL as:

min L(welil) = 7 D) (UmGslwii)u). )

(xi,y;) €D

where faq(x;; {Wk}km=1 is the output of the MoE network. The
goal is to fully utilize all local models and form an MoE network
M which can achieve high performance on predefined tasks. For
the MoE network M, it consists of gating network G and a set of
experts E = {wk} ;- The MoE architecture dynamically adapts
the weight of each expert pr through the gating network G and
maximizes the influence of all experts. The weight is described as:

p(x;G) =softmax(x - G). 6)

For any input sample, the gating network G will dynamically adjust
the weights of the experts and distribute these samples to special-
ized experts for high performance. We use the weighted outputs of
the experts as the final output of the MoE network. To this end, the
fm () can be formulated as:

M 36) = ) i (6 G) (s we). %)
k=1

to form a better MoE network.

Therefore, the objective of IntactOFL can be rewritten as

mginLM({wk}Z‘:l)=ﬁ 3 ol G)f (e yi)-

(xi,yi) eD k=1
®)

3.2 Framework Overview

The illustration of IntactOFL is shown in Figure 2. After the clients
upload their well-pre-trained models, the server aggregates these
local models with an MoE architecture. The one-shot MoE network
consists of the experts and a gating network. The server treats all
the local models as the experts and trains a gating network in a
self-supervised manner. Specifically, each training epoch consists
of two steps: (1) the current one-shot MoE network guides the data
generation process of the Generator g with Lgen , given random
noise, the g can produce many auxiliary samples with similarity and
informativeness. (2) Then we add the noise on these samples for data
augmentation. These generated samples are treated as the input
of the one-shot MoE network. We adopt the .Ctr ain t0 update the
gating network for forming a better MoE network. Note that the self-
supervised MoE training consists of two major processes, which
are self-supervised data generation and one-shot MoE network
training. The self-supervised data generation is designed for data-
free training, and the latter one is for flexible aggregation. We
present the details of these two parts in § 3.3 and § 3.4, respectively.

3.3 Self-supervised Data Generation

Data generation fuels the self-supervised process with optimization
basics. For each specific pseudo label, the generator is expected to
render noises as the samples with this label. Initially, the MoE’s
prediction on a generated sample would be very different from the
expected pseudo label, which would lead to the optimization of the
generator and, more importantly, the gating network before the
MoE, via back-propagation. This self-tuning process proceeds until
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the generator learns how to generate and the gating network learns
how to assign weights.

Similarity Measure. Basically, the generated samples are settled
to mimic the raw local data by representing a similar distribution.
We consider the similarity between the generated auxiliary data and
the training data. Note that the similarity only focuses on the similar
data distribution for utility, rather than visual reconstruction. Fol-
lowing the existing data-free methods, we adopt the Cross-Entropy
loss function [7, 49]. Different from existing methods which adopt
statistic ensemble output to guide the data generator training, we
dynamically use the updated MoE network. The loss for similarity
in training epoch ¢ can be formulated as:

LGy ) = tee(fy(0), 1), )

where % is the auxiliary data with a corresponding label y.

Informativeness Measure. Optimized only with the CE loss,
the generated auxiliary data can be easily fitted, while may be less
representative and contains less information for fine-tuning the
backbone gating network. Inspired by [7, 10], the hard samples can
embed more representative information compared with easy-to-
fit samples. In our context, the samples resulting in more diverse
outputs across different experts are considered harder to fit (i.e.,
more informative in optimizing the gating network). Hence, we use
the variance of the experts’ output, i.e., o( f/t\/l (%)), as the informa-
tiveness of each sample. With this, we could explicitly increase the
preference for hard samples in data generation. By jointly consid-
ering similarity and informativeness, the loss function that guides
data generator training is formulated as:

Lien(®y, 1) = o(fR DN EE(fr(R), 1), (10)

where o(+) is the variance function.

To further promote sample diversity, we introduce a data aug-
mentation module after data generation. Specifically, we further
add noise back to the originally generated sample following [7].
As such, we can get more diverse auxiliary samples D4 of which
similarity and informativeness.

3.4 One-shot MoE Network

The goal of training the MoE network is to make the best of the
knowledge of local data. We use the generated auxiliary data as
the training data. To preserve the knowledge of local models with-
out disruption, we froze all experts, since the experts’ updating
would cause unavoidable forgetting [2]. Instead, we focus on train-
ing a high-performance gating network to make the best use of
the knowledge of local models. To this end, we update the gating
network according to Eq.(11).

min Ly () = 5 D, O a6 i) v
g Al ynepa k=1
(11)

Meanwhile, the ‘over-trust’ problem of the gating network has
been widely reported [20, 33], that is, the gating network always
produces large weights for the same few experts. Following [33], we
add a balance loss to mitigate the weight bias of the gating network.
Specifically, we compute the importance of each expert in every
batch in ¢ iteration, and the balance loss equals the square of the
coefficient of variation (CV) of the set of importance (see Eq.(12)).
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A is the scaling factor for the balance loss, which is set as 1 in the
implementations.

ViX) = ) pl(x6),
xeX (12)
‘Elt;alance X)=4- C(V((Vt(x))z'

In summary, the MoE training loss function consists of two
parts, the first part is for high performance which minimizes the
difference between model outputs and labels; the second part is for
preventing the “over-trust" phenomenon and achieving a balanced
gating network. We conclude the loss function as:

mgin,[:;mm({Wk}Zl:l) = ‘Lj\/(({wk}lrcnzl;DA) + ‘thialance (DA)'

(13)
The details of the training process are presented in the Appendix.

4 Evaluation

4.1 Experiment Setup

We provide the important details of the datasets, data partition, and
baselines here, and present the rest details in the Appendix.

4.1.1 Datasets. We evaluate the proposed IntactOFL and baselines
on four widely used classification benchmarks (CIFAR-10, CIFAR-
100, SVHN, and Tiny-ImageNet) and one domain generalization
benchmark (PACS, results are shown in Appendix). The details of
the datasets are shown in the Appendix.

4.1.2  Data Partition. To simulate the real-world heterogeneous
environment, we adopt the Dirichlet distribution () to control
the proportions of each category across clients [21, 46]. A small a
represents a biased data distribution. Following the settings in [49],
we set « = {0.05,0.1,0.3,0.5}.

4.1.3 Baselines. We compare the performance of the proposed In-
tactOFL against the existing two categories of methods (the knowl-
edge distillation-based method and the parameter optimization-
based method). For the former, we compare with existing SoTA
which are DENSE [49] and Co-Boosting [7]. Meanwhile, follow-
ing the setting in [7, 49], we also compare with the FedDF [26],
F-ADI [45], and F-DAFL [4]. For parameter optimization-based
methods, we choose high-performance MA-Echo [36] and one-shot
FedAvg (O-FedAvg) [12, 29]. To ensure fair comparisons, we omit
the comparison with methods that require multi-round interactions,
such as FedProx [23], SCAFFOLD [19], and FedCav [47]. We also
neglect some methods that require additional public data or models,
such as FedKT [22], FedOV [9] and FedGen [52].

4.2 Main Results

4.2.1 Effectiveness. Table 1 shows the effectiveness of the pro-
posed IntactOFL, we conduct experiments under various data het-
erogeneity settings across different datasets and methods by vary
a = {0.05,0.1,0.3,0.5}. From the table, we conclude that the pro-
posed IntactOFL is effective in data heterogeneity settings. Specifi-
cally, (a) In all data heterogeneity settings, the IntactOFL outper-
forms than baselines. The IntactOFL surpasses the best baseline by
substantial margins with 5.54%, 4.26%, 3.50%, and 2.82% on CIFAR-
10, CIFAR-100, SVHN, and Tiny-ImageNet, respectively. Even in a
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Table 1: Performance on four data heterogeneity (varying a = {0.05,0.1,0.3,0.5}, lower « represents more heterogeneous) on four
benchmarks (CIFAR-10, CIFAR-100, SVHN, and Tiny-ImageNet). Underline/bold fonts highlight the best baseline/the proposed

IntactOFL.

Method a MA-Echo  O-FedAvg FedDF F-ADI F-DAFL Ensemble DENSE  Co-Boosting Ours
0.05 36.77£0.91 12.13%£2.11 35.53+0.67 35.93x1.56 38.32+1.40 41.36%£0.67 38.37£1.08  39.20+0.81  48.22+0.43
CIFAR- 0.1  51.23+0.28 17.43+0.51 41.58+0.80 48.35+x1.23 46.34+1.12 45.43+0.32 50.26+0.24  58.49+1.24 61.13+0.63
10 0.3 60.14+0.21 28.07x0.89 44.78+0.60 52.66+1.44 54.03+1.71 62.18+0.34 59.76+£0.45 67.21+x1.76  70.21+0.60
0.5 64.21£0.23 35.42+0.67 54.58+0.73 58.78+1.67 59.09+2.23 61.61+0.23 62.19+0.12  70.24+2.34  79.93+0.23
0.05 19.54%+0.45 4.77+£0.21 15.07%£0.74 14.65x0.98 16.31+£0.33 20.46%0.62 18.37%x2.43  20.19+1.44  27.99+0.67
CIFAR- 0.1 29.11+0.26  6.45+0.71  27.17+0.55 28.13+1.24 26.80+1.33 26.23+0.55 32.03+0.44  27.59+1.35  39.15+0.46
100 03 37.77£0.24 10.67+£0.31 31.23+£0.79 33.18+0.67 34.89+1.45 38.01+0.67 37.33+0.48  39.30+1.30 41.86+0.60
0.5 41.94%£0.21 12.13£0.05 35.39+0.47 39.44+1.11 37.88+1.34 41.61+0.77 38.84+0.39 42.67+1.40 46.78+0.78
0.05 44.18+0.34 19.43+2.44 4835+0.52 47.12+1.34 48.75+1.88 52.34+171 47.28+1.11  53.45+146  59.88+0.89
SVHN 0.1  56.33%£0.25 36.77+£0.71 49.34+0.57 52.67+1.22 52.46+1.24 57.44+0.35 55.28+0.56  62.36+1.65  63.23+0.12
0.3 79.94+0.41 49.25£0.24 63.90+£0.39 66.50£1.67 64.32+1.88 79.86+0.21 79.43+0.58  79.99+2.03  83.22+0.06
0.5 80.23+0.24 57.61x0.75 72.11+0.47 77.62+2.01 74.55+1.80 81.22+0.17 80.03£0.24  81.34+1.03  84.81+0.12
0.05 1546+0.66 5.67£0.45 11.45+0.40 13.92+1.99 15.12+1.34 13.28%+0.67 18.77£0.67  19.00+1.45  20.45+0.34
Tiny- 0.1  22.23+0.56  8.31%+0.21  16.32+0.33 19.00+1.78 19.01+1.11 15.38+0.23 22.25+0.33  21.90+1.20  28.43+0.17
ImageNet 0.3 23.46+£0.19 13.61+0.10 17.79+0.57 26.01+1.44 23.78+1.23 17.53+0.31 28.14+0.34  29.24+1.32  30.15+0.12
0.5 28.21+0.42 13.71+£0.16 27.55+0.66 29.98+1.34 27.98+1.10 28.50+0.46 32.34+0.32  30.78+2.01 35.09+0.14

more heterogeneous environment (a = 0.05), IntactOFL achieves
over a 5% accuracy improvement compared to the best baseline. (b)
Notably, the knowledge distillation-based baselines achieve better
performance than the parameter optimization-based methods. The
DENSE and Co-Boosting both achieve ~3% test accuracy higher
than MA-Echo and O-FedAvg. The reason is that the parameter
reconstruction process of optimization-based methods does not pre-
serve the local models’ knowledge, and the knowledge distillation-
based methods can transfer this knowledge to a new model. Owing
to the MoE architecture which preserves the local models, the
proposed IntactOFL can achieve better performance among these
baselines. (c) Besides, the Ensemble which equally averages all local
models’ output can achieve the second-best performance in some
settings. This is thanks to the benefits of preserving all information.
However, the compromised results obtained by equally averaging
limits its performance in all settings. The proposed IntactOFL adopts
the gating network for effective utilization of local models’ knowl-
edge evidently improves the entire performance. In summary, the
IntactOFL is effective in various data heterogeneity scenarios
and achieves competitive performance than baselines.

4.2.2  Scalability. We evaluate the scalability of IntactOFL in two
aspects: horizontal scalability, which evaluates the performance
in a larger distributed network with more clients; and vertical
scalability, which evaluates the performance in scenarios of model
heterogeneity among clients, where different clients can possess
entirely distinct model architectures.

For horizontal scalability, we evaluate the test accuracy of
all methods in diverse networks by varying the number of clients
m = {5, 10, 25, 50, 100} on CIFAR-10 and SVHN. Table 2 shows the
results of different methods across different clients m in CIFAR-10,
the results of SVHN are presented in the Appendix. As suggested
in [24], the server can become a major bottleneck while the number

of clients increases. We also reach a similar conclusion, with the
number of clients m increasing, the performance decreases, which
is consistent with [7, 24, 49]. Even though the negative impact on
the accuracy, our methods still achieve better performance than
other baselines, which also verifies that the knowledge-preserved
method brings a better aggregated global model. In summary, the
IntactOFL is scalable across diverse distributed networks of varying
sizes. For vertical scalability, we note that our proposed methods
can support heterogeneous models, which are scalable to different
model architectures. We set five different model architectures from
simple to complex, that is, MLP, CNN, MobileNetV2 (Mob) [31],
ResNet (Res) [15], and VGG [34]. We evaluate the test accuracy
of all methods with the same setting in § 4.2.1 except a = 0.5.
Besides, we consider a challenging setting in FL, in which both
the data and models are heterogeneous across all clients. Different
clients can train their own models on their local data with entirely
different model architectures. We remark that this practical setting
is complicated in existing methods [7, 17, 49].

Thus, we conduct two types of evaluations to verify the ability
to support heterogeneous models. Since some baselines do not
support the model heterogeneity, we omit these methods and only
report the Ensemble, DENSE, and Co-Boosting. For the first type,
we evaluate the performance by varying the model architectures of
entire systems. All clients are homogeneous and test on different
model architectures. Results are demonstrated on the left panel
of Figure 3. We conclude that the model architecture can impact
the performance, a model with better representation ability can
achieve better performance. The proposed method achieves the
best performance across all model architectures. The second type
concerns a scenario where the model architectures among clients
are completely heterogeneous. We set three cases of these complete
model heterogeneity, see the central panel in Figure 3. For example,
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Table 2: Test accuracy of the server model on CIFAR-10 across different numbers of clients m = {5, 10, 25, 50, 100}.

m  MA-Echo O-FedAvg FedDF F-ADI F-DAFL Ensemble DENSE Co-Boosting Ours
5 64.21 35.42 54.58  59.34 58.59 61.61 62.19 55.34 79.93
10 52.64 32.09 48.88  46.33 45.45 60.44 54.67 51.11 69.11
25 48.36 28.03 3544 31383 32.88 58.44 49.32 49.32 64.32
50 45.35 28.24 29.91 27.66 29.98 52.51 48.67 44.56 59.45
100 38.54 27.14 25.66 24.89 28.91 45.72 43.34 42.45 53.21

the Case #1 represents that Client 0 uses MLP to train a local model
with the test accuracy of 39.92%, after the local training, the server
would collect the MLP from Client 0, VGG from Client 1, ResNet
from Client 2, CNN from Client 3, and MobileNet from Client 4. We
report the test accuracy of the global model, which is aggregated
by completely heterogeneous local models. The results (see the
right panel in Figure 3) demonstrate that even in complete model
heterogeneity settings, our methods can achieve ~10% accuracy
improvement than existing baselines. In summary, our proposed
method is heterogeneity-tolerant and significantly outperforms
other baselines. In summary, the proposed IntactOFL is scalable
both in large distributed network and model heterogeneity
scenarios and outperforms other baselines by a large margin.

4.2.3 Efficiency. Note that the proposed IntactOFL is efficient. We
evaluate the efficiency from two aspects: parameter efficiency and
computation efficiency. The parameter efficiency means the re-
quired parameters should be as small as possible. The computation
efficiency means the training iterations should be as few as possible.
We adopt the same setting as the § 4.2.1.

For parameter efficiency, we report the # trainable parameters
and the test accuracy of DENSE and Co-Boosting across different
global model architectures. The trainable parameters of DENSE and
Co-Boosting mainly include the data generator and student model
for distillation. In IntactOFL, there is no additional global model, the
trainable part only consists of the generator and lightweight gating
network. As shown in Figure 4, thanks to the lightweight gating
network, the proposed IntactOFL achieves the highest accu-
racy while requiring the smallest trainable parameters (85%
of DENSE(CNN)) on the server. Besides, owing to very few pa-
rameters, it spends only 12.45s (CPU+GPU) or 76.84s (CPU only)
for the entire aggregation process. Notably, the IntactOFL is also
computation-efficient. We consider that the computation of lo-
cal training is essential to learning local knowledge. However, the
aggregation process is inefficient, so existing methods introduce
additional computation overhead to distill local models or require
multi-rounds of local training. To better evaluate the computation
overhead, we design a new factor named Performance Gain (PG),

which can be formulated as PG = , where P is the

Cserver+Clients
performance, and in the classification task, P is the test accuracy;
Cserver 1s the computation cost on the server, including training the
generator, distilling, and so on. C,jjenss is the sum of local training
iterations of all clients. Here, We use a coarse-grained estimation
of the number of iterations T to approximate the computational
cost, which is Cserver = Tserver and Cejjenss = Tm X Z,’anl Ej;, where
Ty, is the interaction rounds between the server and clients. For
OFL, T,, = 1, for multi-rounds FL, T,;, > 1. We use the PG to

Table 3: The Performance Gain (PG) of all methods on CIFAR-
10 with data heterogeneity Dirichlet(a = 0.5). Tx represents
the total iterations on the server corresponding to method X.

Methods Cserver + Celients P PG (x1072)
MAEcho  Tya-gpeho + X0, Ei 6421 27917
O-FedAvg Zzl:1 E; 35.42 1.7710

FedDF Tpp + 2 E; 54.58 2.3730

F-ADI Tapr + ercn:1 E; 59.34 2.5800

F-DAFL TparL + X7, Ei 58.59 2.5474
Ensemble ZZLI E; 61.61 3.0805

DENSE TpENSE + Zrknzl E; 62.19 2.7039

Co-Boosting  Tco-Boosting + ZZ‘zl E; 55.34 2.4061
M-FedAvg T S E; 47.62 0.4762
SCAFFOLD T Xpey Ei 82.59 0.8259

FedCav T kazl E; 81.18 0.8118

Ours Tours + 2 Ei 79.93  3.4752

evaluate how much the performance gain is brought by each
training iteration. Furthermore, we introduce some representa-
tive multi-round federated learning methods for comparison, which
are multi-rounds FedAvg (M-FedAvg) [29], SCAFFOLD [19], and
FedCav [47]. For a fair comparison, we evaluate the OFL and multi-
round FL methods in the same vanilla one-shot settings in § 4.2.1 (5
clients with local epochs> 400). As reported in Table 3, we achieve
the highest PG across all baselines, which means that our meth-
ods can obtain the highest global model accuracy improvement for
each training step. Notably, we acclaim that our proposal attains
the SoTA performance in one-shot FL with even similar accuracy to
multi-round FL. As there is no free lunch, we emphasize it is notable
to attain just 3.7% less accuracy while saving over 76% communi-
cation and computation overheads. In summary, the proposed
IntactOFL is parameter-efficient and computation-efficient
compared with other baselines.

4.3 Analysis of the IntactOFL

4.3.1 Impact of MoE Architectures. In this part, we investigate the
impact of different MoE architectures. We report the performance
and memory consumption of different MoE architectures (Softmax
gating, noisy Top-K gating [32], and MMoE [28]). We test these
methods on the CIFAR-10 with CNN among 5 clients and use the
averaged memory consumption of the same batch of samples to
represent the computation cost in Figure 5. (a) We notice that the
test accuracy and memory consumption act as a trade-off, utilizing
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Figure 3: Left panel: Performance on different model architectures. Central panel: Visualization of the local model performance
with different architectures. Right panel: Performance on three completely model heterogeneity cases.

%
S
s

Ours
DENSE(MLP)
DENSE(CNN)
DENSE(Mob)
DENSE(Res)
DENSE(VGG)
Co-Boosting(MLP)
Co-Boosting(CNN)
Co-Boosting(Mob)
Co-Boosting(Res)
Co-Boosting(VGG)

=
a
1

=

=]

«
L

Iy
S

Test Accuracy (%)
o
5y
|

¥

o
a

d<]d<4d<<O0O000e

93
S

[

0 10 20
# Trainable Parameters (millions)

—
30 130132

Figure 4: Test accuracy v.s. # trainable parameters on CIFAR-
10. We compare the IntactOFL with DENSE and Co-Boosting
by varying their global model architectures such as MLP,
CNN, MobileNet, ResNet, and VGG.
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Figure 5: Test accuracy and memory consumption of different
gating network architectures on CIFAR-10, such as Softmax,
noisy Top-K, and MMoE. We vary the number of gating net-
works (K;) in MMoE and the topk experts (K = {1, 2,3, 4}) with
the noise level o = {0, 1}.

more experts can achieve high performance meanwhile causing
larger memory consumption. (b) The noise is designed to make
MoE training more balanced. However, too much noise can harm
the model’s performance. (¢) Using more gating networks for per-
formance increment has shown limited improvement.

4.3.2  Impact of Generator. We provide the visualization of the
generated data on CIFAR-10 and SVHN in Figure 6. Note that the
auxiliary data are generated for utilization rather than visual recon-
struction. We also investigate the impact of the key components
on data generation. We conduct leave-one-out testing and report

O 0NN AW~ O
© P UL A WN = O

£

CIFAR-10 Ours

SVHN  Ours

Figure 6: Visualization of generated samples.

Table 4: Impact of the key components in data generation.

CIFAR-10 CIFAR-100 SVHN Tiny-ImageNet

Ours 79.93 46.78 84.81 35.09

w/o Aug 76.41 44.45 83.79 34.46

w/o Inf 72.68 43.69 80.66 31.91

w/ Sim 53.12 36.47 73.11 17.98
FedDF + Sim + Inf 57.21 37.87 79.09 30.44
FedDF + Sim 56.23 30.12 74.32 28.13

the results by removing data augmentation (w/o Aug), removing in-
formativeness (w/o Inf), and removing both (w/ Sim). As shown in
Table 4, only considering the similarity leads to poor performance,
which is consistent with [7, 49]. The informativeness module is
essential for performance improvement compared with the data
augmentation. A combination of these components leads to a high
performance, which shows that all these components have con-
tributed to performance improvement.

5 Conclusion

In this paper, we aimed to bridge the knowledge loss of existing
one-shot federated learning methods, where the model reconstruc-
tion process results in significant performance degradation. We pro-
posed IntactOFL, a novel method that adopts the Mixture of Experts’
architecture to preserve all local models’ knowledge, achieving high
performance through dynamic weighting by a gating network. We
designed a self-supervised MoE training framework by iteratively
generating samples and updating the gating network. Extensive ex-
periments have verified the effectiveness, scalability, and efficiency
of the proposed IntactOFL.
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